Smart_LLM / app.py
Daemontatox's picture
Update app.py
1e18916 verified
raw
history blame
7.94 kB
import subprocess
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import gradio as gr
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "Daemontatox/AetherDrake"
TITLE = "<h1><center>Sphinx Reasoner</center></h1>"
PLACEHOLDER = """
<center>
<p>Ask me Anything !!</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.message-wrap {
overflow-x: auto;
white-space: pre-wrap !important;
}
.message-wrap p {
margin-bottom: 1em;
white-space: pre-wrap !important;
}
.message-wrap pre {
background-color: #f6f8fa;
border-radius: 3px;
padding: 16px;
overflow-x: auto;
}
.message-wrap code {
background-color: rgba(175,184,193,0.2);
border-radius: 3px;
padding: 0.2em 0.4em;
font-family: monospace;
}
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="flash_attention_2",
quantization_config=quantization_config)
# Ensure `pad_token_id` is set
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
def format_text(text):
"""Helper function to format text with proper line breaks and spacing"""
# Replace single newlines with double newlines for paragraph spacing
formatted = text.replace('\n', '\n\n')
# Remove extra spaces between paragraphs
formatted = '\n'.join(line.strip() for line in formatted.split('\n'))
return formatted
@spaces.GPU()
def stream_chat(
message: str,
history: list,
system_prompt: str,
temperature: float = 1.0,
max_new_tokens: int = 8192,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer,
timeout=60.0,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=False if temperature == 0 else True,
top_p=top_p,
top_k=top_k,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
temperature=temperature,
repetition_penalty=penalty,
streamer=streamer,
)
buffer = ""
current_line = ""
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
for new_text in streamer:
# Add the new text to both buffers
buffer += new_text
current_line += new_text
# Check if we have complete lines to process
if '\n' in current_line:
lines = current_line.split('\n')
# The last element might be incomplete, so keep it in current_line
current_line = lines[-1]
# Format the complete text
formatted_buffer = format_text(buffer)
yield formatted_buffer
else:
yield buffer
chatbot = gr.Chatbot(
height=600,
placeholder=PLACEHOLDER,
bubble_full_width=False,
show_copy_button=True
)
DEFAULT_SYSTEM_PROMPT = """You are an AI expert at providing high-quality answers. Your process involves these steps:
1. Initial Thought: Use the <Thinking> tag to reason step-by-step and generate your best possible response to the following request: [User's Request Here].
Example:
<Thinking> Step 1: Understand the request. Step 2: Analyze potential solutions. Step 3: Choose the optimal response. </Thinking>
2. Self-Critique: Critically evaluate your initial response within <Critique> tags, focusing on:
Accuracy: Is it factually correct and verifiable?
Clarity: Is it easy to understand and free of ambiguity?
Completeness: Does it fully address the user's request?
Improvement: What specific aspects could be better?
Example:
<Critique> Accuracy: Verified. Clarity: Needs simplification. Completeness: Add examples. </Critique>
3. Revision: Based on your critique, use <Revising> tags to refine and improve your response.
Example:
<Revising> Adjusting for clarity and adding an example to improve understanding. </Revising>
4. Final Response: Present your revised answer clearly within <Final> tags.
Example:
<Final> This is the improved response. </Final>
5. Tag Innovation: If necessary, create and define new tags to better structure your reasoning or enhance clarity. Use them consistently.
Example:
<Definition> This tag defines a new term introduced in the response. </Definition>
Ensure every part of your thought process and output is properly enclosed in appropriate tags for clarity and organization."""
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_classes="duplicate-button"
)
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters",
open=False,
render=False
),
additional_inputs=[
gr.Textbox(
value=DEFAULT_SYSTEM_PROMPT,
label="System Prompt",
lines=5,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.5,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=32000,
step=1,
value=8192,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["What is meant by a Singularity?"],
["Explain the theory of Relativity"],
["Explain your thought process in details"],
["Explain how mamba2 structure LLMs work and how do they differ from transformers?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()