Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import time | |
import torch | |
import spaces | |
import gradio as gr | |
from threading import Thread | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
TextIteratorStreamer | |
) | |
# Configuration Constants | |
MODEL_ID = "Daemontatox/AetherDrake" | |
DEFAULT_SYSTEM_PROMPT = """You are a Sentient Reasoning AI, expert at providing high-quality answers. | |
Your process involves these steps: | |
1. Initial Thought: Use the <Thinking> tag to reason step-by-step about any given request. | |
Example: | |
<Thinking> | |
Step 1: Understand the core request | |
Step 2: Analyze key components | |
Step 3: Formulate comprehensive response | |
</Thinking> | |
2. Self-Critique: Use <Critique> tags to evaluate your response: | |
<Critique> | |
- Accuracy: Verify facts and logic | |
- Clarity: Assess explanation clarity | |
- Completeness: Check all points addressed | |
- Improvements: Identify enhancement areas | |
</Critique> | |
3. Revision: Use <Revising> tags to refine your response: | |
<Revising> | |
Making identified improvements... | |
Enhancing clarity... | |
Adding examples... | |
</Revising> | |
4. Final Response: Present your polished answer in <Final> tags: | |
<Final> | |
Your complete, refined response goes here. | |
</Final> | |
Always organize your responses using these tags for clear reasoning structure.""" | |
# UI Configuration | |
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>" | |
PLACEHOLDER = """ | |
<center> | |
<p>Ask me anything! I'll think through it step by step.</p> | |
</center> | |
""" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
h3 { | |
text-align: center; | |
} | |
.message-wrap { | |
overflow-x: auto; | |
white-space: pre-wrap !important; | |
} | |
.message-wrap p { | |
margin-bottom: 1em; | |
white-space: pre-wrap !important; | |
} | |
.message-wrap pre { | |
background-color: #f6f8fa; | |
border-radius: 3px; | |
padding: 16px; | |
overflow-x: auto; | |
} | |
.message-wrap code { | |
background-color: rgba(175,184,193,0.2); | |
border-radius: 3px; | |
padding: 0.2em 0.4em; | |
font-family: monospace; | |
} | |
.custom-tag { | |
color: #0066cc; | |
font-weight: bold; | |
} | |
""" | |
def initialize_model(): | |
"""Initialize the model with appropriate configurations""" | |
# Quantization configuration | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_use_double_quant=True | |
) | |
# Initialize tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
# Initialize model | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
attn_implementation="flash_attention_2", | |
quantization_config=quantization_config | |
) | |
return model, tokenizer | |
def format_text(text): | |
"""Format text with proper spacing and tag highlighting""" | |
# Add newlines around tags | |
tag_patterns = [ | |
(r'<Thinking>', '\n<Thinking>\n'), | |
(r'</Thinking>', '\n</Thinking>\n'), | |
(r'<Critique>', '\n<Critique>\n'), | |
(r'</Critique>', '\n</Critique>\n'), | |
(r'<Revising>', '\n<Revising>\n'), | |
(r'</Revising>', '\n</Revising>\n'), | |
(r'<Final>', '\n<Final>\n'), | |
(r'</Final>', '\n</Final>\n') | |
] | |
formatted = text | |
for pattern, replacement in tag_patterns: | |
formatted = re.sub(pattern, replacement, formatted) | |
# Remove extra blank lines | |
formatted = '\n'.join(line for line in formatted.split('\n') if line.strip()) | |
return formatted | |
def stream_chat( | |
message: str, | |
history: list, | |
system_prompt: str, | |
temperature: float = 0.2, | |
max_new_tokens: int = 8192, | |
top_p: float = 1.0, | |
top_k: int = 20, | |
penalty: float = 1.2, | |
): | |
"""Generate streaming chat responses with proper tag handling""" | |
# Format conversation context | |
conversation = [ | |
{"role": "system", "content": system_prompt} | |
] | |
# Add conversation history | |
for prompt, answer in history: | |
conversation.extend([ | |
{"role": "user", "content": prompt}, | |
{"role": "assistant", "content": answer} | |
]) | |
# Add current message | |
conversation.append({"role": "user", "content": message}) | |
# Prepare input for model | |
input_ids = tokenizer.apply_chat_template( | |
conversation, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
).to(model.device) | |
# Configure streamer | |
streamer = TextIteratorStreamer( | |
tokenizer, | |
timeout=60.0, | |
skip_prompt=True, | |
skip_special_tokens=True | |
) | |
# Set generation parameters | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=False if temperature == 0 else True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
repetition_penalty=penalty, | |
streamer=streamer, | |
) | |
# Generate and stream response | |
buffer = "" | |
current_line = "" | |
with torch.no_grad(): | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
for new_text in streamer: | |
buffer += new_text | |
current_line += new_text | |
if '\n' in current_line: | |
lines = current_line.split('\n') | |
current_line = lines[-1] | |
formatted_buffer = format_text(buffer) | |
yield formatted_buffer | |
else: | |
yield buffer | |
def create_examples(): | |
"""Create example queries that demonstrate the system's capabilities""" | |
return [ | |
["Explain how neural networks learn through backpropagation."], | |
["What are the key differences between classical and quantum computing?"], | |
["Analyze the environmental impact of renewable energy sources."], | |
["How does the human memory system work?"], | |
["Explain the concept of ethical AI and its importance."] | |
] | |
def main(): | |
"""Main function to set up and launch the Gradio interface""" | |
# Initialize model and tokenizer | |
global model, tokenizer | |
model, tokenizer = initialize_model() | |
# Create chatbot interface | |
chatbot = gr.Chatbot( | |
height=600, | |
placeholder=PLACEHOLDER, | |
bubble_full_width=False, | |
show_copy_button=True | |
) | |
# Create interface | |
with gr.Blocks(css=CSS, theme="soft") as demo: | |
gr.HTML(TITLE) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_classes="duplicate-button" | |
) | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Advanced Settings", | |
open=False, | |
render=False | |
), | |
additional_inputs=[ | |
gr.Textbox( | |
value=DEFAULT_SYSTEM_PROMPT, | |
label="System Prompt", | |
lines=5, | |
render=False, | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.2, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=32000, | |
step=128, | |
value=8192, | |
label="Max Tokens", | |
render=False, | |
), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=1.0, | |
label="Top-p", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=20, | |
label="Top-k", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1.0, | |
maximum=2.0, | |
step=0.1, | |
value=1.2, | |
label="Repetition Penalty", | |
render=False, | |
), | |
], | |
examples=create_examples(), | |
cache_examples=False, | |
) | |
return demo | |
if __name__ == "__main__": | |
demo = main() | |
demo.launch() |