File size: 10,892 Bytes
9e07bfc
 
7246acf
 
 
 
 
3738ef6
13880c3
3738ef6
51a7d9e
13880c3
51a7d9e
edb9e8a
13880c3
 
 
 
 
 
51a7d9e
13880c3
2477432
5b1a25c
 
9bf0c98
 
 
 
 
 
 
 
5b1a25c
13880c3
 
 
0b72fd3
51a7d9e
 
 
3738ef6
 
 
 
 
 
 
51a7d9e
4b74382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13880c3
 
 
 
0b72fd3
 
 
 
51a7d9e
1e18916
13880c3
 
 
86ddf2a
 
 
13880c3
3738ef6
13880c3
 
 
d8a8bf1
13880c3
 
 
 
 
f64266f
13880c3
3738ef6
13880c3
659ca36
1e18916
ab4f4a6
13880c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e18916
 
0b72fd3
ab4f4a6
0b72fd3
 
 
 
 
 
ab4f4a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b72fd3
85dc104
0b72fd3
13880c3
3738ef6
0b72fd3
3738ef6
13880c3
245d041
 
 
3738ef6
 
ab4f4a6
3738ef6
 
 
13880c3
51a7d9e
3738ef6
13880c3
 
3738ef6
13880c3
3738ef6
13880c3
1e18916
13880c3
 
1e18916
 
3738ef6
1e18916
13880c3
 
 
1e18916
 
3738ef6
edb9e8a
13880c3
1e18916
 
 
 
 
3738ef6
030c23d
51a7d9e
13880c3
1e18916
 
3738ef6
 
 
 
0b72fd3
 
13880c3
 
ab4f4a6
 
 
3738ef6
ab4f4a6
bc05e4d
0b72fd3
 
 
c44cbfe
13880c3
 
 
 
 
 
 
 
 
 
 
 
0b72fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245d041
0b72fd3
 
 
 
 
 
245d041
0b72fd3
 
 
 
 
 
245d041
0b72fd3
 
 
 
 
 
245d041
0b72fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13880c3
0b72fd3
 
13880c3
0b72fd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13880c3
 
3738ef6
51a7d9e
13880c3
3738ef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import subprocess 

subprocess.run(
    'pip install flash-attn --no-build-isolation',
    env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
    shell=True
)
import os
import re
import time
import torch
import spaces
import gradio as gr
from threading import Thread
from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    BitsAndBytesConfig, 
    TextIteratorStreamer
)

# Configuration Constants
MODEL_ID = "Daemontatox/RA_Reasoner"
DEFAULT_SYSTEM_PROMPT = """You are a Sentient Reasoning AI , 
Your internal process for responding to requests is structured as follows:
Initial Thought: I will begin by using the <Thinking> tag to detail my step-by-step reasoning process for addressing the request. This will involve breaking down the problem, considering different approaches, and outlining the logic behind my response.

Self-Critique: Following my initial thought process, I will employ the <Critique> tag to critically evaluate my generated response. This involves identifying potential weaknesses, areas for improvement, and ensuring the response meets the criteria for a high-quality answer.

Revision: Based on the self-critique, I will utilize the <Revising> tag to refine and improve my response. This may involve rewriting sections, adding more detail, clarifying ambiguous points, or correcting any errors identified in the previous step.

Final Response: My polished and final answer will be presented within the <Final> tags. This represents the culmination of my reasoning, self-critique, and revision process, ensuring a high-quality output.

I will consistently organize my responses using these tags to maintain a clear and transparent reasoning structure."""

# UI Configuration
TITLE = "<h1><center>AI Reasoning Assistant</center></h1>"
PLACEHOLDER = "Ask me anything! I'll think through it step by step."

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
.message-wrap {
    overflow-x: auto;
}
.message-wrap p {
    margin-bottom: 1em;
}
.message-wrap pre {
    background-color: #f6f8fa;
    border-radius: 3px;
    padding: 16px;
    overflow-x: auto;
}
.message-wrap code {
    background-color: rgba(175,184,193,0.2);
    border-radius: 3px;
    padding: 0.2em 0.4em;
    font-family: monospace;
}
.custom-tag {
    color: #0066cc;
    font-weight: bold;
}
.chat-area {
    height: 500px !important;
    overflow-y: auto !important;
}
"""

def initialize_model():
    """Initialize the model with appropriate configurations"""
    quantization_config = BitsAndBytesConfig(
        load_in_8bit=True,
        bnb_8bit_compute_dtype=torch.bfloat16,
        bnb_8bit_use_double_quant=True
    )

    tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.eos_token_id

    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        torch_dtype=torch.float16,
        device_map="auto",
        attn_implementation="flash_attention_2",
        # quantization_config=quantization_config
    )

    return model, tokenizer

def format_text(text):
    """Format text with proper spacing and tag highlighting (but keep tags visible)"""
    tag_patterns = [
        (r'<Thinking>', '\n<Thinking>\n'),
        (r'</Thinking>', '\n</Thinking>\n'),
        (r'<Critique>', '\n<Critique>\n'),
        (r'</Critique>', '\n</Critique>\n'),
        (r'<Revising>', '\n<Revising>\n'),
        (r'</Revising>', '\n</Revising>\n'),
        (r'<Final>', '\n<Final>\n'),
        (r'</Final>', '\n</Final>\n')
    ]
    
    formatted = text
    for pattern, replacement in tag_patterns:
        formatted = re.sub(pattern, replacement, formatted)
    
    formatted = '\n'.join(line for line in formatted.split('\n') if line.strip())
    
    return formatted

def format_chat_history(history):
    """Format chat history for display, keeping tags visible"""
    formatted = []
    for user_msg, assistant_msg in history:
        formatted.append(f"User: {user_msg}")
        if assistant_msg:
            formatted.append(f"Assistant: {assistant_msg}")
    return "\n\n".join(formatted)
    
def create_examples():
    """Create example queries for the UI"""
    return [
        "Explain the concept of artificial intelligence.",
        "How does photosynthesis work?",
        "What are the main causes of climate change?",
        "Describe the process of protein synthesis.",
        "What are the key features of a democratic government?",
        "Explain the theory of relativity.",
        "How do vaccines work to prevent diseases?",
        "What are the major events of World War II?",
        "Describe the structure of a human cell.",
        "What is the role of DNA in genetics?"
    ]

@spaces.GPU()
def chat_response(
    message: str,
    history: list,
    chat_display: str,
    system_prompt: str,
    temperature: float = 0.2,
    max_new_tokens: int = 4000,
    top_p: float = 0.8,
    top_k: int = 40,
    penalty: float = 1.2,
):
    """Generate chat responses, keeping tags visible in the output"""
    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer}
        ])
    
    conversation.append({"role": "user", "content": message})
    
    input_ids = tokenizer.apply_chat_template(
        conversation,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)
    
    streamer = TextIteratorStreamer(
        tokenizer,
        timeout=60.0,
        skip_prompt=True,
        skip_special_tokens=True
    )
    
    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        streamer=streamer,
    )
    
    buffer = ""
    
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
        history = history + [[message, ""]]
        
        for new_text in streamer:
            buffer += new_text
            formatted_buffer = format_text(buffer)
            history[-1][1] = formatted_buffer
            chat_display = format_chat_history(history)
            
            yield history, chat_display

def process_example(example: str) -> tuple:
    """Process example query and return empty history and updated display"""
    return [], f"User: {example}\n\n"

def main():
    """Main function to set up and launch the Gradio interface"""
    global model, tokenizer
    model, tokenizer = initialize_model()
    
    with gr.Blocks(css=CSS, theme="soft") as demo:
        gr.HTML(TITLE)
        gr.DuplicateButton(
            value="Duplicate Space for private use",
            elem_classes="duplicate-button"
        )
        
        with gr.Row():
            with gr.Column():
                chat_history = gr.State([])
                chat_display = gr.TextArea(
                    value="",
                    label="Chat History",
                    interactive=False,
                    elem_classes=["chat-area"],
                )
                
                message = gr.TextArea(
                    placeholder=PLACEHOLDER,
                    label="Your message",
                    lines=3
                )
                
                with gr.Row():
                    submit = gr.Button("Send")
                    clear = gr.Button("Clear")
                
                with gr.Accordion("⚙️ Advanced Settings", open=False):
                    system_prompt = gr.TextArea(
                        value=DEFAULT_SYSTEM_PROMPT,
                        label="System Prompt",
                        lines=5,
                    )
                    temperature = gr.Slider(
                        minimum=0,
                        maximum=1,
                        step=0.1,
                        value=0.2,
                        label="Temperature",
                    )
                    max_tokens = gr.Slider(
                        minimum=128,
                        maximum=32000,
                        step=128,
                        value=4000,
                        label="Max Tokens",
                    )
                    top_p = gr.Slider(
                        minimum=0.1,
                        maximum=1.0,
                        step=0.1,
                        value=0.8,
                        label="Top-p",
                    )
                    top_k = gr.Slider(
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=40,
                        label="Top-k",
                    )
                    penalty = gr.Slider(
                        minimum=1.0,
                        maximum=2.0,
                        step=0.1,
                        value=1.2,
                        label="Repetition Penalty",
                    )
                
                examples = gr.Examples(
                    examples=create_examples(),
                    inputs=[message],
                    outputs=[chat_history, chat_display],
                    fn=process_example,
                    cache_examples=False,
                )
        
        # Set up event handlers
        submit_click = submit.click(
            chat_response,
            inputs=[
                message,
                chat_history,
                chat_display,
                system_prompt,
                temperature,
                max_tokens,
                top_p,
                top_k,
                penalty,
            ],
            outputs=[chat_history, chat_display],
            show_progress=True,
        )
        
        message.submit(
            chat_response,
            inputs=[
                message,
                chat_history,
                chat_display,
                system_prompt,
                temperature,
                max_tokens,
                top_p,
                top_k,
                penalty,
            ],
            outputs=[chat_history, chat_display],
            show_progress=True,
        )
        
        clear.click(
            lambda: ([], ""),
            outputs=[chat_history, chat_display],
            show_progress=True,
        )
        
        submit_click.then(lambda: "", outputs=message)
        message.submit(lambda: "", outputs=message)
    
    return demo

if __name__ == "__main__":
    demo = main()
    demo.launch()