File size: 5,124 Bytes
830eeaa
 
 
 
 
 
 
3738ef6
 
 
51a7d9e
d8a8bf1
51a7d9e
edb9e8a
51a7d9e
 
8187e3d
51a7d9e
8187e3d
3738ef6
 
 
8187e3d
3738ef6
 
51a7d9e
 
 
 
3738ef6
 
 
 
 
 
 
51a7d9e
 
 
3738ef6
 
d8a8bf1
 
 
 
 
 
3738ef6
3bc2ef0
3738ef6
03e8281
3738ef6
bccdc56
d8a8bf1
3738ef6
659ca36
 
 
 
85dc104
3738ef6
 
 
 
 
6414f48
3738ef6
 
 
 
 
 
 
 
 
 
51a7d9e
3738ef6
 
 
 
51a7d9e
3738ef6
99a7a45
3738ef6
 
030c23d
3738ef6
edb9e8a
3738ef6
 
1c74333
3738ef6
 
659ca36
 
3738ef6
 
030c23d
51a7d9e
3738ef6
 
 
 
 
 
 
 
9a43acc
9eefdf9
3738ef6
 
51a7d9e
3738ef6
51a7d9e
 
 
 
 
 
 
 
3738ef6
13f5041
3738ef6
 
 
 
51a7d9e
 
 
 
3738ef6
51a7d9e
 
 
 
3738ef6
 
51a7d9e
6414f48
3738ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
3738ef6
51a7d9e
 
3738ef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import subprocess
subprocess.run(
    'pip install flash-attn --no-build-isolation',
    env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
    shell=True
)

import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
import gradio as gr
from threading import Thread

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = "Daemontatox/Qwen2_5Reason"

TITLE = "<h1><center>Qwen2_5Reason</center></h1>"

PLACEHOLDER = """
<center>
<p>Hi! Lets start thinking !!</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type= "nf4")

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.float16,
    device_map="auto",
    attn_implementation="flash_attention_2",
    quantization_config=quantization_config)

# Ensure `pad_token_id` is set
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
    system_prompt: str,
    temperature: float = 0.8, 
    max_new_tokens: int = 512, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=input_ids, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        eos_token_id = tokenizer.eos_token_id,
        pad_token_id = tokenizer.pad_token_id,
        temperature = temperature,
        repetition_penalty=penalty,
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

            
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Textbox(
                value="You are a helpful assistant.",
                label="System Prompt",
                lines=5,
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=8192,
                step=1,
                value= 512,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()