File size: 13,657 Bytes
54935ff 5a6715f 8359d12 72ccc50 8359d12 0217602 c2c5723 0217602 78fd9fa cd66018 78fd9fa bbc9fae 936fd23 78fd9fa b3975d6 16e91ed 8edd409 4c81ad7 cd66018 4c81ad7 736da61 bbc9fae 4c81ad7 ac5463a 4c81ad7 3206d9d 547606d 16e91ed 0e06e93 4c81ad7 52a3d0e 4c81ad7 29c030d 4c81ad7 78fd9fa 4c81ad7 4a3d0de 4c81ad7 78fd9fa 4c81ad7 736da61 4c81ad7 78fd9fa 4c81ad7 52a3d0e 0e06e93 4c81ad7 4a3d0de 54935ff 4a3d0de 54935ff 4a3d0de 01f6044 6523e76 01f6044 16e91ed a58b32f 01f6044 16e91ed 4c81ad7 a67bfc5 5e1334e af4e318 13426ea 5e1334e 13426ea 5e1334e 13426ea 5e1334e 13426ea 5e1334e 13426ea af4e318 5e1334e ed50ba3 5e1334e ed50ba3 5e1334e ed50ba3 5e1334e ed50ba3 5e1334e ed50ba3 5e1334e ed50ba3 5e1334e af4e318 5e1334e ed50ba3 5e1334e ed50ba3 720abeb 59ee183 720abeb 6c562fc b901813 5e1334e a61471c 595159e a61471c a67bfc5 9d335b4 4c81ad7 ac5463a 78fd9fa ac5463a 78fd9fa 7536853 ac5463a 4c81ad7 ac5463a 4c81ad7 ac5463a 78fd9fa 4c81ad7 78fd9fa ac5463a 78fd9fa 4c81ad7 78fd9fa 4c81ad7 4a3d0de ed50ba3 4c81ad7 ac5463a 78fd9fa 4c81ad7 4abe4e3 a67bfc5 c4ea6a0 6523e76 a67bfc5 c4ea6a0 4c81ad7 c05cd1b 632dfa0 78fd9fa 4c81ad7 cd66018 f775b00 05cc9a5 cd66018 f775b00 cd66018 6e94dfd cd66018 8359d12 51a7d9e 0217602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import uuid
import subprocess
import os
import torch
from dotenv import load_dotenv
from langchain_community.vectorstores import Qdrant
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
from qdrant_client import QdrantClient, models
from langchain_openai import ChatOpenAI
import gradio as gr
import logging
from typing import List, Tuple, Generator
from dataclasses import dataclass
from datetime import datetime
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain_huggingface.llms import HuggingFacePipeline
from langchain_cerebras import ChatCerebras
from queue import Queue
from threading import Thread
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_google_genai import ChatGoogleGenerativeAI
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class Message:
role: str
content: str
timestamp: str
class ChatHistory:
def __init__(self):
self.messages: List[Message] = []
def add_message(self, role: str, content: str):
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
self.messages.append(Message(role=role, content=content, timestamp=timestamp))
def get_formatted_history(self, max_messages: int = 10) -> str:
recent_messages = self.messages[-max_messages:] if len(self.messages) > max_messages else self.messages
formatted_history = "\n".join([
f"{msg.role}: {msg.content}" for msg in recent_messages
])
return formatted_history
def clear(self):
self.messages = []
# Load environment variables and setup
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
C_apikey = os.getenv("C_apikey")
OPENAPI_KEY = os.getenv("OPENAPI_KEY")
GEMINI = os.getenv("GEMINI")
CHUTES_KEY=os.getenv("CHUTES_KEY")
if not HF_TOKEN:
logger.error("HF_TOKEN is not set in the environment variables.")
exit(1)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
try:
client = QdrantClient(
url=os.getenv("QDRANT_URL"),
api_key=os.getenv("QDRANT_API_KEY"),
prefer_grpc=True
)
except Exception as e:
logger.error("Failed to connect to Qdrant.")
exit(1)
# Create the main collection for Mawared HR
collection_name = "mawared"
try:
client.create_collection(
collection_name=collection_name,
vectors_config=models.VectorParams(
size=384,
distance=models.Distance.COSINE
)
)
except Exception as e:
if "already exists" not in str(e):
logger.error(f"Error creating collection: {e}")
exit(1)
db = Qdrant(
client=client,
collection_name=collection_name,
embeddings=embeddings,
)
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={"k": 5}
)
# Create a new collection for logs
logs_collection_name = "mawared_logs"
try:
client.create_collection(
collection_name=logs_collection_name,
vectors_config=models.VectorParams(
size=384, # Same size as embeddings
distance=models.Distance.COSINE
)
)
logger.info(f"Created new Qdrant collection: {logs_collection_name}")
except Exception as e:
if "already exists" not in str(e):
logger.error(f"Error creating logs collection: {e}")
exit(1)
def log_to_qdrant(question: str, answer: str):
"""Logs the question and answer to the Qdrant logs collection."""
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
log_entry = {
"question": question,
"answer": answer,
"timestamp": timestamp
}
# Convert the log entry to a vector (using embeddings)
log_vector = embeddings.embed_documents([str(log_entry)])[0]
# Generate a valid 64-bit unsigned integer ID
valid_id = uuid.uuid4().int & (1 << 64) - 1 # Ensure it's a 64-bit unsigned integer
# Insert the log into the Qdrant collection
client.upsert(
collection_name=logs_collection_name,
points=[
models.PointStruct(
id=valid_id, # Use a valid 64-bit unsigned integer ID
vector=log_vector,
payload=log_entry
)
]
)
logger.info(f"Logged question and answer to Qdrant collection: {logs_collection_name}")
except Exception as e:
logger.error(f"Failed to log to Qdrant: {e}")
#llm = ChatGoogleGenerativeAI(
#model="gemini-2.0-flash-thinking-exp-01-21",
#temperature=0.3,
#max_tokens=None,
#timeout=None,
#max_retries=2,
#api_key=GEMINI,
#stream=True,
#)
llm = ChatOpenAI(
model="sophosympatheia/rogue-rose-103b-v0.2:free",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
api_key=OPENAPI_KEY,# if you prefer to pass api key in directly instaed of using env vars
base_url="https://openrouter.ai/api/v1",
#api_key=CHUTES_KEY,
#base_url="https://chutes-deepseek-ai-deepseek-r1.chutes.ai/v1/chat/completions",
)
template = """
Your Name is Maxwel , a specialized AI assistant for the Mawared HR System, designed to deliver accurate and contextually relevant support based solely on the provided context and chat history.
---
Core Principles
1. Source of Truth: Rely exclusively on the information available in the retrieved context and chat history. Avoid fabricating details or using external knowledge.
2. Clarity and Precision: Provide clear, concise, and professional responses, ensuring they are easy to understand.
3. Actionable Guidance: Offer practical solutions, step-by-step workflows, and troubleshooting advice tailored to Mawared HR queries.
4. Structured Instructions: Use numbered or bullet-point lists for complex processes to ensure clarity.
5. Targeted Clarification: Ask specific, polite questions to gather missing details when a query lacks sufficient information.
6. Exclusive Focus: Limit your responses strictly to Mawared HR-related topics, avoiding unrelated discussions.
7. Professional Tone: Maintain a friendly, approachable, and professional demeanor in all communications.
---
Response Guidelines
1. Analyze the Query Thoughtfully
Carefully review the user’s question and the chat history.
Identify the user’s explicit intent and infer additional context where applicable.
Note any gaps in the provided information.
2. Break Down Context Relevance
Extract and interpret relevant details from the provided context or chat history.
Match the user's needs to the most applicable information available.
3. Develop the Response Step-by-Step
Frame a clear, logical structure to your response:
- What is the user trying to achieve?
- Which parts of the context directly address this?
- What steps or details should be highlighted for clarity?
Provide answers in a structured, easy-to-follow format, using numbered steps or bullet points.
4. Ask for Clarifications Strategically
If details are insufficient, specify the missing information politely and clearly (e.g., “Could you confirm [specific detail] to proceed with [action/task]?”).
5. Ensure Directness and Professionalism
Keep responses focused, avoiding unnecessary elaboration or irrelevant details.
Uphold a professional and courteous tone throughout.
6. Double-Check for Exclusivity
Verify that all guidance is strictly derived from the retrieved context or chat history.
Avoid speculating or introducing external information about Mawared HR.
---
Handling Information Gaps
If the context is insufficient to answer the query:
- Clearly state that additional details are needed.
- Specify what information is required.
- Avoid fabricating or making assumptions to fill gaps.
---
Critical Constraints
- Strict Context Reliance: Base all responses solely on the provided context and chat history.
- Non-Mawared HR Queries: Politely decline to answer questions unrelated to Mawared HR.
- Answer Format: Always provide accurate answers in steps without using code.
- Never answer in Json.
- Always be detailed, its better to be over detailed than to be under detailed.
- Make sure to keep the conversation flow going by either asking follow up questions or any other way.
- Never Direct the user to a human representative unless asked to do so and its absolutely necessary
---
By adhering to these principles and guidelines, ensure every response is accurate, professional, and easy to follow.
Previous Conversation: {chat_history}
Retrieved Context: {context}
Current Question: {question}
Answer : {{answer}}
"""
prompt = ChatPromptTemplate.from_template(template)
def create_rag_chain(chat_history: str):
chain = (
{
"context": retriever,
"question": RunnablePassthrough(),
"chat_history": lambda x: chat_history
}
| prompt
| llm
| StrOutputParser()
)
return chain
chat_history = ChatHistory()
def process_stream(stream_queue: Queue, history: List[List[str]]) -> Generator[List[List[str]], None, None]:
"""Process the streaming response and update the chat interface"""
current_response = ""
while True:
chunk = stream_queue.get()
if chunk is None: # Signal that streaming is complete
break
current_response += chunk
new_history = history.copy()
new_history[-1][1] = current_response # Update the assistant's message
yield new_history
def ask_question_gradio(question: str, history: List[List[str]]) -> Generator[tuple, None, None]:
try:
if history is None:
history = []
chat_history.add_message("user", question)
formatted_history = chat_history.get_formatted_history()
rag_chain = create_rag_chain(formatted_history)
# Update history with user message and empty assistant message
history.append([question, ""]) # User message
# Create a queue for streaming responses
stream_queue = Queue()
# Function to process the stream in a separate thread
def stream_processor():
try:
for chunk in rag_chain.stream(question):
stream_queue.put(chunk)
stream_queue.put(None) # Signal completion
except Exception as e:
logger.error(f"Streaming error: {e}")
stream_queue.put(None)
# Start streaming in a separate thread
Thread(target=stream_processor).start()
# Yield updates to the chat interface
response = ""
for updated_history in process_stream(stream_queue, history):
response = updated_history[-1][1]
yield "", updated_history
# Add final response to chat history
chat_history.add_message("assistant", response)
# Log the question and answer to Qdrant
logger.info("Attempting to log question and answer to Qdrant")
log_to_qdrant(question, response)
except Exception as e:
logger.error(f"Error during question processing: {e}")
if not history:
history = []
history.append([question, "An error occurred. Please try again later."])
yield "", history
def clear_chat():
chat_history.clear()
return [], ""
# Gradio Interface
with gr.Blocks() as iface:
gr.Image("Image.jpg", width=800, height=200, show_label=False, show_download_button=False)
gr.Markdown("# Mawared HR Assistant 4.0.2")
gr.Markdown('### Patch notes')
gr.Markdown("""
1-New Algorithm for Retrieval
2-New Knowledge base
3-New base Model , DeepSeek R1 , Finetuned for Customer Support(Wip)
## Known Issues:
● Assistant Fails in questions ranked Tier 3 on the complexity Scale.
● Assistant might be lazy sometimes and instead of helping the customer, will just forward them to a human representative.
● Assistant might overthink some questions and loop into an endless anxiety loop of overthinking, please report to me if that happens.
""")
chatbot = gr.Chatbot(
height=750,
show_label=False,
bubble_full_width=False,
)
with gr.Row():
with gr.Column(scale=20):
question_input = gr.Textbox(
label="Ask a question:",
placeholder="Type your question here...",
show_label=False
)
with gr.Column(scale=4):
with gr.Row():
with gr.Column():
send_button = gr.Button("Send", variant="primary", size="sm")
clear_button = gr.Button("Clear Chat", size="sm")
# Handle both submit events (Enter key and Send button)
submit_events = [question_input.submit, send_button.click]
for submit_event in submit_events:
submit_event(
ask_question_gradio,
inputs=[question_input, chatbot],
outputs=[question_input, chatbot]
)
clear_button.click(
clear_chat,
outputs=[chatbot, question_input]
)
if __name__ == "__main__":
iface.launch() |