# MIT License # Copyright (c) 2022 Phil Wang # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """All code taken from https://github.com/lucidrains/VN-transformer""" from collections import namedtuple from functools import wraps import torch import torch.nn.functional as F from einops import rearrange, reduce from einops.layers.torch import Rearrange from packaging import version from torch import einsum, nn # constants FlashAttentionConfig = namedtuple( "FlashAttentionConfig", ["enable_flash", "enable_math", "enable_mem_efficient"] ) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__(self, dropout=0.0, flash=False, l2_dist=False): super().__init__() assert not ( flash and l2_dist ), "flash attention is not compatible with l2 distance" self.l2_dist = l2_dist self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not ( flash and version.parse(torch.__version__) < version.parse("2.0.0") ), "in order to use flash attention, you must be using pytorch 2.0 or above" # determine efficient attention configs for cuda and cpu self.cpu_config = FlashAttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device("cuda")) if device_properties.major == 8 and device_properties.minor == 0: print_once( "A100 GPU detected, using flash attention if input tensor is on cuda" ) self.cuda_config = FlashAttentionConfig(True, False, False) else: print_once( "Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda" ) self.cuda_config = FlashAttentionConfig(False, True, True) def flash_attn(self, q, k, v, mask=None): _, heads, q_len, _, _, is_cuda = ( *q.shape, k.shape[-2], q.is_cuda, ) # Check if mask exists and expand to compatible shape # The mask is B L, so it would have to be expanded to B H N L if exists(mask): mask = mask.expand(-1, heads, q_len, -1) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, ) return out def forward(self, q, k, v, mask=None): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ scale = q.shape[-1] ** -0.5 if exists(mask) and mask.ndim != 4: mask = rearrange(mask, "b j -> b 1 1 j") if self.flash: return self.flash_attn(q, k, v, mask=mask) # similarity sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale # l2 distance if self.l2_dist: # -cdist squared == (-q^2 + 2qk - k^2) # so simply work off the qk above q_squared = reduce(q**2, "b h i d -> b h i 1", "sum") k_squared = reduce(k**2, "b h j d -> b h 1 j", "sum") sim = sim * 2 - q_squared - k_squared # key padding mask if exists(mask): sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) attn = self.attn_dropout(attn) # aggregate values out = einsum("b h i j, b h j d -> b h i d", attn, v) return out # helper def exists(val): # noqa: F811 return val is not None def default(val, d): return val if exists(val) else d def inner_dot_product(x, y, *, dim=-1, keepdim=True): return (x * y).sum(dim=dim, keepdim=keepdim) # layernorm class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) # equivariant modules class VNLinear(nn.Module): def __init__(self, dim_in, dim_out, bias_epsilon=0.0): super().__init__() self.weight = nn.Parameter(torch.randn(dim_out, dim_in)) self.bias = None self.bias_epsilon = bias_epsilon # in this paper, they propose going for quasi-equivariance with a small bias, controllable with epsilon, which they claim lead to better stability and results if bias_epsilon > 0.0: self.bias = nn.Parameter(torch.randn(dim_out)) def forward(self, x): out = einsum("... i c, o i -> ... o c", x, self.weight) if exists(self.bias): bias = F.normalize(self.bias, dim=-1) * self.bias_epsilon out = out + rearrange(bias, "... -> ... 1") return out class VNReLU(nn.Module): def __init__(self, dim, eps=1e-6): super().__init__() self.eps = eps self.W = nn.Parameter(torch.randn(dim, dim)) self.U = nn.Parameter(torch.randn(dim, dim)) def forward(self, x): q = einsum("... i c, o i -> ... o c", x, self.W) k = einsum("... i c, o i -> ... o c", x, self.U) qk = inner_dot_product(q, k) k_norm = k.norm(dim=-1, keepdim=True).clamp(min=self.eps) q_projected_on_k = q - inner_dot_product(q, k / k_norm) * k out = torch.where(qk >= 0.0, q, q_projected_on_k) return out class VNAttention(nn.Module): def __init__( self, dim, dim_head=64, heads=8, dim_coor=3, bias_epsilon=0.0, l2_dist_attn=False, flash=False, num_latents=None, # setting this would enable perceiver-like cross attention from latents to sequence, with the latents derived from VNWeightedPool ): super().__init__() assert not ( l2_dist_attn and flash ), "l2 distance attention is not compatible with flash attention" self.scale = (dim_coor * dim_head) ** -0.5 dim_inner = dim_head * heads self.heads = heads self.to_q_input = None if exists(num_latents): self.to_q_input = VNWeightedPool( dim, num_pooled_tokens=num_latents, squeeze_out_pooled_dim=False ) self.to_q = VNLinear(dim, dim_inner, bias_epsilon=bias_epsilon) self.to_k = VNLinear(dim, dim_inner, bias_epsilon=bias_epsilon) self.to_v = VNLinear(dim, dim_inner, bias_epsilon=bias_epsilon) self.to_out = VNLinear(dim_inner, dim, bias_epsilon=bias_epsilon) if l2_dist_attn and not exists(num_latents): # tied queries and keys for l2 distance attention, and not perceiver-like attention self.to_k = self.to_q self.attend = Attend(flash=flash, l2_dist=l2_dist_attn) def forward(self, x, mask=None): """ einstein notation b - batch n - sequence h - heads d - feature dimension (channels) c - coordinate dimension (3 for 3d space) i - source sequence dimension j - target sequence dimension """ c = x.shape[-1] if exists(self.to_q_input): q_input = self.to_q_input(x, mask=mask) else: q_input = x q, k, v = self.to_q(q_input), self.to_k(x), self.to_v(x) q, k, v = map( lambda t: rearrange(t, "b n (h d) c -> b h n (d c)", h=self.heads), (q, k, v), ) out = self.attend(q, k, v, mask=mask) out = rearrange(out, "b h n (d c) -> b n (h d) c", c=c) return self.to_out(out) def VNFeedForward(dim, mult=4, bias_epsilon=0.0): dim_inner = int(dim * mult) return nn.Sequential( VNLinear(dim, dim_inner, bias_epsilon=bias_epsilon), VNReLU(dim_inner), VNLinear(dim_inner, dim, bias_epsilon=bias_epsilon), ) class VNLayerNorm(nn.Module): def __init__(self, dim, eps=1e-6): super().__init__() self.eps = eps self.ln = LayerNorm(dim) def forward(self, x): norms = x.norm(dim=-1) x = x / rearrange(norms.clamp(min=self.eps), "... -> ... 1") ln_out = self.ln(norms) return x * rearrange(ln_out, "... -> ... 1") class VNWeightedPool(nn.Module): def __init__( self, dim, dim_out=None, num_pooled_tokens=1, squeeze_out_pooled_dim=True ): super().__init__() dim_out = default(dim_out, dim) self.weight = nn.Parameter(torch.randn(num_pooled_tokens, dim, dim_out)) self.squeeze_out_pooled_dim = num_pooled_tokens == 1 and squeeze_out_pooled_dim def forward(self, x, mask=None): if exists(mask): mask = rearrange(mask, "b n -> b n 1 1") x = x.masked_fill(~mask, 0.0) numer = reduce(x, "b n d c -> b d c", "sum") denom = mask.sum(dim=1) mean_pooled = numer / denom.clamp(min=1e-6) else: mean_pooled = reduce(x, "b n d c -> b d c", "mean") out = einsum("b d c, m d e -> b m e c", mean_pooled, self.weight) if not self.squeeze_out_pooled_dim: return out out = rearrange(out, "b 1 d c -> b d c") return out # equivariant VN transformer encoder class VNTransformerEncoder(nn.Module): def __init__( self, dim, *, depth, dim_head=64, heads=8, dim_coor=3, ff_mult=4, final_norm=False, bias_epsilon=0.0, l2_dist_attn=False, flash_attn=False, ): super().__init__() self.dim = dim self.dim_coor = dim_coor self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append( nn.ModuleList( [ VNAttention( dim=dim, dim_head=dim_head, heads=heads, bias_epsilon=bias_epsilon, l2_dist_attn=l2_dist_attn, flash=flash_attn, ), VNLayerNorm(dim), VNFeedForward(dim=dim, mult=ff_mult, bias_epsilon=bias_epsilon), VNLayerNorm(dim), ] ) ) self.norm = VNLayerNorm(dim) if final_norm else nn.Identity() def forward(self, x, mask=None): *_, d, c = x.shape assert ( x.ndim == 4 and d == self.dim and c == self.dim_coor ), "input needs to be in the shape of (batch, seq, dim ({self.dim}), coordinate dim ({self.dim_coor}))" for attn, attn_post_ln, ff, ff_post_ln in self.layers: x = attn_post_ln(attn(x, mask=mask)) + x x = ff_post_ln(ff(x)) + x return self.norm(x) # invariant layers class VNInvariant(nn.Module): def __init__( self, dim, dim_coor=3, ): super().__init__() self.mlp = nn.Sequential( VNLinear(dim, dim_coor), VNReLU(dim_coor), Rearrange("... d e -> ... e d") ) def forward(self, x): return einsum("b n d i, b n i o -> b n o", x, self.mlp(x)) # main class class VNTransformer(nn.Module): def __init__( self, *, dim, depth, num_tokens=None, dim_feat=None, dim_head=64, heads=8, dim_coor=3, reduce_dim_out=True, bias_epsilon=0.0, l2_dist_attn=False, flash_attn=False, translation_equivariance=False, translation_invariant=False, ): super().__init__() self.token_emb = nn.Embedding(num_tokens, dim) if exists(num_tokens) else None dim_feat = default(dim_feat, 0) self.dim_feat = dim_feat self.dim_coor_total = dim_coor + dim_feat assert (int(translation_equivariance) + int(translation_invariant)) <= 1 self.translation_equivariance = translation_equivariance self.translation_invariant = translation_invariant self.vn_proj_in = nn.Sequential( Rearrange("... c -> ... 1 c"), VNLinear(1, dim, bias_epsilon=bias_epsilon) ) self.encoder = VNTransformerEncoder( dim=dim, depth=depth, dim_head=dim_head, heads=heads, bias_epsilon=bias_epsilon, dim_coor=self.dim_coor_total, l2_dist_attn=l2_dist_attn, flash_attn=flash_attn, ) if reduce_dim_out: self.vn_proj_out = nn.Sequential( VNLayerNorm(dim), VNLinear(dim, 1, bias_epsilon=bias_epsilon), Rearrange("... 1 c -> ... c"), ) else: self.vn_proj_out = nn.Identity() def forward( self, coors, *, feats=None, mask=None, return_concatted_coors_and_feats=False ): if self.translation_equivariance or self.translation_invariant: coors_mean = reduce(coors, "... c -> c", "mean") coors = coors - coors_mean x = coors # [batch, num_points, 3] if exists(feats): if feats.dtype == torch.long: assert exists( self.token_emb ), "num_tokens must be given to the VNTransformer (to build the Embedding), if the features are to be given as indices" feats = self.token_emb(feats) assert ( feats.shape[-1] == self.dim_feat ), f"dim_feat should be set to {feats.shape[-1]}" x = torch.cat((x, feats), dim=-1) # [batch, num_points, 3 + dim_feat] assert x.shape[-1] == self.dim_coor_total x = self.vn_proj_in(x) # [batch, num_points, hidden_dim, 3 + dim_feat] x = self.encoder(x, mask=mask) # [batch, num_points, hidden_dim, 3 + dim_feat] x = self.vn_proj_out(x) # [batch, num_points, 3 + dim_feat] coors_out, feats_out = ( x[..., :3], x[..., 3:], ) # [batch, num_points, 3], [batch, num_points, dim_feat] if self.translation_equivariance: coors_out = coors_out + coors_mean if not exists(feats): return coors_out if return_concatted_coors_and_feats: return torch.cat((coors_out, feats_out), dim=-1) return coors_out, feats_out