jammmmm's picture
Add spar3d demo files
38dbec8
raw
history blame
7.74 kB
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from spar3d.models.transformers.attention import BasicTransformerBlock
from spar3d.models.utils import BaseModule
class Transformer1D(BaseModule):
"""
A 1D Transformer model for sequence data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 88
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 1
norm_num_groups: int = 32
attention_bias: bool = False
activation_fn: str = "geglu"
norm_elementwise_affine: bool = True
residual: bool = True
input_layer_norm: bool = True
norm_eps: float = 1e-5
cfg: Config
def configure(self) -> None:
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
inner_dim = self.num_attention_heads * self.attention_head_dim
linear_cls = nn.Linear
# 2. Define input layers
self.in_channels = self.cfg.in_channels
self.norm = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.in_channels,
eps=self.cfg.norm_eps,
affine=True,
)
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
self.num_attention_heads,
self.attention_head_dim,
activation_fn=self.cfg.activation_fn,
attention_bias=self.cfg.attention_bias,
norm_elementwise_affine=self.cfg.norm_elementwise_affine,
norm_eps=self.cfg.norm_eps,
)
for d in range(self.cfg.num_layers)
]
)
# 4. Define output layers
self.out_channels = (
self.cfg.in_channels
if self.cfg.out_channels is None
else self.cfg.out_channels
)
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
):
"""
The [`Transformer1DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (
1 - encoder_attention_mask.to(hidden_states.dtype)
) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# 1. Input
batch, _, seq_len = hidden_states.shape
residual = hidden_states
if self.cfg.input_layer_norm:
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 1).reshape(
batch, seq_len, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
)
# 3. Output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, seq_len, inner_dim)
.permute(0, 2, 1)
.contiguous()
)
if self.cfg.residual:
output = hidden_states + residual
else:
output = hidden_states
return output