jammmmm's picture
Add spar3d demo files
38dbec8
raw
history blame
15.6 kB
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from spar3d.models.transformers.attention import FeedForward
from spar3d.models.utils import BaseModule
class CrossAttention(nn.Module):
def __init__(
self,
dim,
kv_dim=None,
num_heads=16,
qkv_bias=False,
attn_drop=0.0,
proj_drop=0.0,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
kv_dim = dim if not kv_dim else kv_dim
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(kv_dim, dim, bias=qkv_bias)
self.wv = nn.Linear(kv_dim, dim, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x_q, x_kv):
B, N_q, C = x_q.shape
B, N_kv, _ = x_kv.shape
# [B, N_q, C] -> [B, N_q, H, C/H]
q = self.wq(x_q).reshape(B, N_q, self.num_heads, C // self.num_heads)
# [B, N_kv, C] -> [B, N_kv, H, C/H]
k = self.wk(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
v = self.wv(x_kv).reshape(B, N_kv, self.num_heads, C // self.num_heads)
# attention
x = torch.nn.functional.scaled_dot_product_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
attn_mask=None,
dropout_p=self.attn_drop,
scale=self.scale,
).transpose(1, 2)
# [B, N_q, H, C/H] -> [B, N_q, C]
x = x.reshape(B, N_q, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class BasicBlock(nn.Module):
def __init__(
self,
dim: int,
kv_dim: Optional[int] = None,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn1 = CrossAttention(
dim,
kv_dim=dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm2 = nn.LayerNorm(dim)
self.attn2 = CrossAttention(
dim,
kv_dim=kv_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm3 = nn.LayerNorm(dim)
self.ff = FeedForward(dim, dropout=ff_drop)
def forward(self, z, x):
z_norm = self.norm1(z)
z = z + self.attn1(z_norm, z_norm)
# TODO: do we need to have the second attention when x is None?
z_norm = self.norm2(z)
z = z + self.attn2(z_norm, x if x is not None else z_norm)
z_norm = self.norm3(z)
z = z + self.ff(z_norm)
return z
class SingleStreamTransformer(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 88
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 16
dropout: float = 0.0
norm_num_groups: int = 32
cross_attention_dim: Optional[int] = None
attention_bias: bool = False
cfg: Config
def configure(self) -> None:
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
inner_dim = self.num_attention_heads * self.attention_head_dim
# Define input layers
self.norm = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.in_channels,
eps=1e-6,
affine=True,
)
self.proj_in = nn.Linear(self.cfg.in_channels, inner_dim)
# Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicBlock(
inner_dim,
kv_dim=self.cfg.cross_attention_dim,
num_heads=self.num_attention_heads,
qkv_bias=self.cfg.attention_bias,
proj_drop=self.cfg.dropout,
ff_drop=self.cfg.dropout,
)
for d in range(self.cfg.num_layers)
]
)
# 4. Define output layers
self.proj_out = nn.Linear(inner_dim, self.cfg.in_channels)
def forward(self, hidden_states, encoder_hidden_states=None, **kwargs):
residual = hidden_states
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.permute(0, 2, 1)
hidden_states = self.proj_in(hidden_states)
for block in self.transformer_blocks:
hidden_states = block(hidden_states, encoder_hidden_states)
hidden_states = self.proj_out(hidden_states).permute(0, 2, 1).contiguous()
# TODO: do we really need to add the residual?
hidden_states = hidden_states + residual
return hidden_states
class FuseBlock(nn.Module):
"""
Fuse X in to Z with cross attention
"""
def __init__(
self,
dim_z: int,
dim_x: int,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
norm_x_input: bool = True,
):
super().__init__()
self.norm_x_input = norm_x_input
if self.norm_x_input:
self.norm_x = nn.LayerNorm(dim_x)
self.attn = CrossAttention(
dim_z,
kv_dim=dim_x,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
)
self.norm_z1 = nn.LayerNorm(dim_z)
self.norm_z2 = nn.LayerNorm(dim_z)
self.ff = FeedForward(dim_z, dropout=ff_drop)
def forward(self, z, x):
# TODO: do we need to normalize x?
z = z + self.attn(self.norm_z1(z), self.norm_x(x) if self.norm_x_input else x)
z = z + self.ff(self.norm_z2(z))
return z
@torch.no_grad()
def get_triplane_attention_mask(res):
N = 3 * res * res
attn_mask = torch.zeros(3, res, res, 3, res, res)
i, j = torch.meshgrid(torch.arange(res), torch.arange(res))
attn_mask[0, i, j, 1, i, :] = 1.0
attn_mask[0, i, j, 2, j, :] = 1.0
attn_mask[1, i, j, 0, i, :] = 1.0
attn_mask[1, i, j, 2, :, j] = 1.0
attn_mask[2, i, j, 0, :, i] = 1.0
attn_mask[2, i, j, 1, :, j] = 1.0
attn_mask = attn_mask.bool()
attn_bias = torch.empty_like(attn_mask, dtype=torch.float)
attn_bias.masked_fill_(attn_mask, 0.0)
attn_bias.masked_fill_(~attn_mask, float("-inf"))
return attn_bias.reshape(N, N)
class TriplaneAttention(nn.Module):
def __init__(
self,
dim: int,
resolution: int,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
full_attention: bool = False,
):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.wq = nn.Linear(dim, dim, bias=qkv_bias)
self.wk = nn.Linear(dim, dim, bias=qkv_bias)
self.wv = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.resolution = resolution
self.full_attention = full_attention
self.attn_mask = (
get_triplane_attention_mask(resolution) if not full_attention else None
)
def forward(self, x):
B, N, C = x.shape
# [B, N, C] -> [B, N, H, C/H]
q = self.wq(x).reshape(B, N, self.num_heads, C // self.num_heads)
k = self.wk(x).reshape(B, N, self.num_heads, C // self.num_heads)
v = self.wv(x).reshape(B, N, self.num_heads, C // self.num_heads)
# detokenize the planes
assert N == self.resolution**2 * 3
attn_bias = (
self.attn_mask.to(q)
.unsqueeze(0)
.unsqueeze(0)
.expand(B, self.num_heads, -1, -1)
if not self.full_attention
else None
)
# full attention
x = torch.nn.functional.scaled_dot_product_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
attn_mask=attn_bias,
dropout_p=self.attn_drop,
scale=self.scale,
).transpose(1, 2)
# [B, N_q, H, C/H] -> [B, N_q, C]
x = x.reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class TwoStreamBlock(nn.Module):
def __init__(
self,
dim_latent: int,
dim_input: int,
num_basic_blocks: int = 4,
num_heads: int = 16,
qkv_bias: bool = False,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
ff_drop: float = 0.0,
norm_x_input: bool = True,
dim_cross: Optional[int] = None,
):
super().__init__()
# Define the fuse block that fuse the input into the latent
self.fuse_block_in = FuseBlock(
dim_latent,
dim_input,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
ff_drop=ff_drop,
norm_x_input=norm_x_input,
)
# Define the transformer block that process the latent
self.transformer_block = nn.ModuleList(
[
BasicBlock(
dim_latent,
kv_dim=dim_cross,
num_heads=num_heads,
qkv_bias=qkv_bias,
proj_drop=proj_drop,
ff_drop=ff_drop,
)
for _ in range(num_basic_blocks)
]
)
# Define the fuse block that fuse the latent into the input
self.fuse_block_out = FuseBlock(
dim_input,
dim_latent,
num_heads=num_heads,
qkv_bias=qkv_bias,
attn_drop=attn_drop,
proj_drop=proj_drop,
ff_drop=ff_drop,
norm_x_input=norm_x_input,
)
def forward(self, latent, input, cross_input):
latent = self.fuse_block_in(latent, input)
for block in self.transformer_block:
latent = block(latent, cross_input)
input = self.fuse_block_out(input, latent)
return latent, input
class TwoStreamInterleaveTransformer(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 16
attention_head_dim: int = 64
raw_triplane_channels: int = 1024
triplane_channels: int = 1024
raw_image_channels: int = 1024
num_latents: int = 1792
num_blocks: int = 4
num_basic_blocks: int = 3
dropout: float = 0.0
latent_init_std: float = 0.02
norm_num_groups: int = 32
attention_bias: bool = False
norm_x_input: bool = False
cross_attention_dim: int = 1024
mix_latent: bool = True
cfg: Config
def configure(self) -> None:
self.mix_latent = self.cfg.mix_latent
# Define the dimensions
self.num_attention_heads = self.cfg.num_attention_heads
self.attention_head_dim = self.cfg.attention_head_dim
self.num_latents = self.cfg.num_latents
self.latent_dim = self.num_attention_heads * self.attention_head_dim
# Define input layers
if self.cfg.norm_num_groups > 0:
self.norm_triplane = torch.nn.GroupNorm(
num_groups=self.cfg.norm_num_groups,
num_channels=self.cfg.raw_triplane_channels,
eps=1e-6,
affine=True,
)
else:
self.norm_triplane = nn.LayerNorm(self.cfg.raw_triplane_channels)
self.proj_triplane = nn.Linear(
self.cfg.raw_triplane_channels, self.cfg.triplane_channels
)
if self.mix_latent:
self.norm_image = nn.LayerNorm(self.cfg.raw_image_channels)
self.proj_image = nn.Linear(self.cfg.raw_image_channels, self.latent_dim)
self.norm_latent = nn.LayerNorm(self.latent_dim)
self.proj_latent = nn.Linear(self.latent_dim, self.latent_dim)
# Define the latents
self.latent_init = nn.Parameter(
torch.zeros(1, self.num_latents, self.latent_dim)
)
nn.init.normal_(self.latent_init, std=self.cfg.latent_init_std)
# Define the transformer blocks
self.main_blocks = nn.ModuleList(
[
TwoStreamBlock(
self.latent_dim,
self.cfg.triplane_channels,
num_basic_blocks=self.cfg.num_basic_blocks,
num_heads=self.num_attention_heads,
qkv_bias=self.cfg.attention_bias,
proj_drop=self.cfg.dropout,
ff_drop=self.cfg.dropout,
norm_x_input=self.cfg.norm_x_input,
dim_cross=self.cfg.cross_attention_dim,
)
for _ in range(self.cfg.num_blocks)
]
)
# 4. Define output layers
self.proj_out = nn.Linear(
self.cfg.triplane_channels, self.cfg.raw_triplane_channels
)
def forward(self, hidden_states, encoder_hidden_states, **kwargs):
# hidden_states: [B, triplane_dim, N_triplane] is triplane tokens
# encoder_hidden_states: [B, N_image, image_dim] is the image tokens
if isinstance(self.norm_triplane, nn.GroupNorm):
triplane_tokens = self.norm_triplane(hidden_states)
triplane_tokens = triplane_tokens.permute(
0, 2, 1
) # [B, N_triplane, triplane_dim]
elif isinstance(self.norm_triplane, nn.LayerNorm):
triplane_tokens = self.norm_triplane(hidden_states.permute(0, 2, 1))
else:
raise ValueError("Unknown normalization layer")
triplane_tokens = self.proj_triplane(triplane_tokens)
if self.mix_latent:
image_tokens = self.norm_image(
encoder_hidden_states
) # [B, N_image, image_dim]
image_tokens = self.proj_image(image_tokens)
init_latents = self.latent_init.expand(
hidden_states.shape[0], -1, -1
) # [B, N_latent_init, latent_dim]
init_latents = self.norm_latent(init_latents)
init_latents = self.proj_latent(init_latents)
if self.mix_latent:
latent_tokens = torch.cat(
[image_tokens, init_latents], dim=1
) # [B, N_latent, latent_dim]
else:
latent_tokens = init_latents
# forward the main blocks
for block in self.main_blocks:
latent_tokens, triplane_tokens = block(
latent_tokens, triplane_tokens, encoder_hidden_states
)
# project the triplane tokens back to the original dimension
triplane_tokens = self.proj_out(triplane_tokens).permute(0, 2, 1).contiguous()
triplane_tokens = triplane_tokens + hidden_states
return triplane_tokens