mboss's picture
Update inference to latest
4d8c3d6
raw
history blame
4.23 kB
import os
import numpy as np
import torch
import torchvision.transforms.functional as torchvision_F
from PIL import Image
from transparent_background import Remover
import spar3d.models.utils as spar3d_utils
def get_device():
if os.environ.get("SPAR3D_USE_CPU", "0") == "1":
return "cpu"
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
return device
def create_intrinsic_from_fov_rad(fov_rad: float, cond_height: int, cond_width: int):
intrinsic = spar3d_utils.get_intrinsic_from_fov(
fov_rad,
H=cond_height,
W=cond_width,
)
intrinsic_normed_cond = intrinsic.clone()
intrinsic_normed_cond[..., 0, 2] /= cond_width
intrinsic_normed_cond[..., 1, 2] /= cond_height
intrinsic_normed_cond[..., 0, 0] /= cond_width
intrinsic_normed_cond[..., 1, 1] /= cond_height
return intrinsic, intrinsic_normed_cond
def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int):
return create_intrinsic_from_fov_rad(np.deg2rad(fov_deg), cond_height, cond_width)
def default_cond_c2w(distance: float):
c2w_cond = torch.as_tensor(
[
[0, 0, 1, distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
]
).float()
return c2w_cond
def normalize_pc_bbox(pc, scale=1.0):
# get the bounding box of the mesh
assert len(pc.shape) in [2, 3] and pc.shape[-1] in [3, 6, 9]
n_dim = len(pc.shape)
device = pc.device
pc = pc.cpu()
if n_dim == 2:
pc = pc.unsqueeze(0)
normalize_pc = []
for b in range(pc.shape[0]):
xyz = pc[b, :, :3] # [N, 3]
bound_x = (xyz[:, 0].max(), xyz[:, 0].min())
bound_y = (xyz[:, 1].max(), xyz[:, 1].min())
bound_z = (xyz[:, 2].max(), xyz[:, 2].min())
# get the center of the bounding box
center = np.array(
[
(bound_x[0] + bound_x[1]) / 2,
(bound_y[0] + bound_y[1]) / 2,
(bound_z[0] + bound_z[1]) / 2,
]
)
# get the largest dimension of the bounding box
scale = max(
bound_x[0] - bound_x[1], bound_y[0] - bound_y[1], bound_z[0] - bound_z[1]
)
xyz = (xyz - center) / scale
extra = pc[b, :, 3:]
normalize_pc.append(torch.cat([xyz, extra], dim=-1))
return (
torch.stack(normalize_pc, dim=0).to(device)
if n_dim == 3
else normalize_pc[0].to(device)
)
def remove_background(
image: Image,
bg_remover: Remover = None,
force: bool = False,
**transparent_background_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = bg_remover.process(
image.convert("RGB"), **transparent_background_kwargs
)
return image
def get_1d_bounds(arr):
nz = np.flatnonzero(arr)
return nz[0], nz[-1]
def get_bbox_from_mask(mask, thr=0.5):
masks_for_box = (mask > thr).astype(np.float32)
assert masks_for_box.sum() > 0, "Empty mask!"
x0, x1 = get_1d_bounds(masks_for_box.sum(axis=-2))
y0, y1 = get_1d_bounds(masks_for_box.sum(axis=-1))
return x0, y0, x1, y1
def foreground_crop(image_rgba, crop_ratio=1.3, newsize=None, no_crop=False):
# make sure the image is a PIL image in RGBA mode
assert image_rgba.mode == "RGBA", "Image must be in RGBA mode!"
if not no_crop:
mask_np = np.array(image_rgba)[:, :, -1]
mask_np = (mask_np >= 1).astype(np.float32)
x1, y1, x2, y2 = get_bbox_from_mask(mask_np, thr=0.5)
h, w = y2 - y1, x2 - x1
yc, xc = (y1 + y2) / 2, (x1 + x2) / 2
scale = max(h, w) * crop_ratio
image = torchvision_F.crop(
image_rgba,
top=int(yc - scale / 2),
left=int(xc - scale / 2),
height=int(scale),
width=int(scale),
)
else:
image = image_rgba
# resize if needed
if newsize is not None:
image = image.resize(newsize)
return image