File size: 6,271 Bytes
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from typing import Optional

import torch
from torch import nn


class MultiHeadAttention(nn.Module):
    def __init__(
        self,
        direction_input_dim: int,
        conditioning_input_dim: int,
        latent_dim: int,
        num_heads: int,
    ):
        """
        Multi-Head Attention module.

        Args:
            direction_input_dim (int): The input dimension of the directional input.
            conditioning_input_dim (int): The input dimension of the conditioning input.
            latent_dim (int): The latent dimension of the module.
            num_heads (int): The number of heads to use in the attention mechanism.
        """
        super().__init__()
        assert latent_dim % num_heads == 0, "latent_dim must be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = latent_dim // num_heads
        self.scale = self.head_dim**-0.5

        self.query = nn.Linear(direction_input_dim, latent_dim)
        self.key = nn.Linear(conditioning_input_dim, latent_dim)
        self.value = nn.Linear(conditioning_input_dim, latent_dim)
        self.fc_out = nn.Linear(latent_dim, latent_dim)

    def forward(
        self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor
    ) -> torch.Tensor:
        """
        Forward pass of the Multi-Head Attention module.

        Args:
            query (torch.Tensor): The directional input tensor.
            key (torch.Tensor): The conditioning input tensor for the keys.
            value (torch.Tensor): The conditioning input tensor for the values.

        Returns:
            torch.Tensor: The output tensor of the Multi-Head Attention module.
        """
        batch_size = query.size(0)

        Q = (
            self.query(query)
            .view(batch_size, -1, self.num_heads, self.head_dim)
            .transpose(1, 2)
        )
        K = (
            self.key(key)
            .view(batch_size, -1, self.num_heads, self.head_dim)
            .transpose(1, 2)
        )
        V = (
            self.value(value)
            .view(batch_size, -1, self.num_heads, self.head_dim)
            .transpose(1, 2)
        )

        attention = (
            torch.einsum("bnqk,bnkh->bnqh", [Q, K.transpose(-2, -1)]) * self.scale
        )
        attention = torch.softmax(attention, dim=-1)

        out = torch.einsum("bnqh,bnhv->bnqv", [attention, V])
        out = (
            out.transpose(1, 2)
            .contiguous()
            .view(batch_size, -1, self.num_heads * self.head_dim)
        )

        out = self.fc_out(out).squeeze(1)
        return out


class AttentionLayer(nn.Module):
    def __init__(
        self,
        direction_input_dim: int,
        conditioning_input_dim: int,
        latent_dim: int,
        num_heads: int,
    ):
        """
        Attention Layer module.

        Args:
            direction_input_dim (int): The input dimension of the directional input.
            conditioning_input_dim (int): The input dimension of the conditioning input.
            latent_dim (int): The latent dimension of the module.
            num_heads (int): The number of heads to use in the attention mechanism.
        """
        super().__init__()
        self.mha = MultiHeadAttention(
            direction_input_dim, conditioning_input_dim, latent_dim, num_heads
        )
        self.norm1 = nn.LayerNorm(latent_dim)
        self.norm2 = nn.LayerNorm(latent_dim)
        self.fc = nn.Sequential(
            nn.Linear(latent_dim, latent_dim),
            nn.ReLU(),
            nn.Linear(latent_dim, latent_dim),
        )

    def forward(
        self, directional_input: torch.Tensor, conditioning_input: torch.Tensor
    ) -> torch.Tensor:
        """
        Forward pass of the Attention Layer module.

        Args:
            directional_input (torch.Tensor): The directional input tensor.
            conditioning_input (torch.Tensor): The conditioning input tensor.

        Returns:
            torch.Tensor: The output tensor of the Attention Layer module.
        """
        attn_output = self.mha(
            directional_input, conditioning_input, conditioning_input
        )
        out1 = self.norm1(attn_output + directional_input)
        fc_output = self.fc(out1)
        out2 = self.norm2(fc_output + out1)
        return out2


class Decoder(nn.Module):
    def __init__(
        self,
        in_dim: int,
        conditioning_input_dim: int,
        hidden_features: int,
        num_heads: int,
        num_layers: int,
        out_activation: Optional[nn.Module],
    ):
        """
        Decoder module.

        Args:
            in_dim (int): The input dimension of the module.
            conditioning_input_dim (int): The input dimension of the conditioning input.
            hidden_features (int): The number of hidden features in the module.
            num_heads (int): The number of heads to use in the attention mechanism.
            num_layers (int): The number of layers in the module.
            out_activation (nn.Module): The activation function to use on the output tensor.
        """
        super().__init__()
        self.residual_projection = nn.Linear(
            in_dim, hidden_features
        )  # projection for residual connection
        self.layers = nn.ModuleList(
            [
                AttentionLayer(
                    hidden_features, conditioning_input_dim, hidden_features, num_heads
                )
                for i in range(num_layers)
            ]
        )
        self.fc = nn.Linear(hidden_features, 3)  # 3 for RGB
        self.out_activation = out_activation

    def forward(
        self, x: torch.Tensor, conditioning_input: torch.Tensor
    ) -> torch.Tensor:
        """
        Forward pass of the Decoder module.

        Args:
            x (torch.Tensor): The input tensor.
            conditioning_input (torch.Tensor): The conditioning input tensor.

        Returns:
            torch.Tensor: The output tensor of the Decoder module.
        """
        x = self.residual_projection(x)
        for layer in self.layers:
            x = layer(x, conditioning_input)
        x = self.fc(x)
        if self.out_activation is not None:
            x = self.out_activation(x)
        return x