File size: 8,896 Bytes
38dbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# --------------------------------------------------------
# Adapted from: https://github.com/openai/point-e
# Licensed under the MIT License
# Copyright (c) 2022 OpenAI
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# --------------------------------------------------------
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple
import torch
from torch import nn
from spar3d.models.utils import BaseModule
def init_linear(layer, stddev):
nn.init.normal_(layer.weight, std=stddev)
if layer.bias is not None:
nn.init.constant_(layer.bias, 0.0)
class MultiheadAttention(nn.Module):
def __init__(
self,
*,
width: int,
heads: int,
init_scale: float,
):
super().__init__()
self.width = width
self.heads = heads
self.c_qkv = nn.Linear(width, width * 3)
self.c_proj = nn.Linear(width, width)
init_linear(self.c_qkv, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
x = self.c_qkv(x)
bs, n_ctx, width = x.shape
attn_ch = width // self.heads // 3
scale = 1 / math.sqrt(attn_ch)
x = x.view(bs, n_ctx, self.heads, -1)
q, k, v = torch.split(x, attn_ch, dim=-1)
x = (
torch.nn.functional.scaled_dot_product_attention(
q.permute(0, 2, 1, 3),
k.permute(0, 2, 1, 3),
v.permute(0, 2, 1, 3),
scale=scale,
)
.permute(0, 2, 1, 3)
.reshape(bs, n_ctx, -1)
)
x = self.c_proj(x)
return x
class MLP(nn.Module):
def __init__(self, *, width: int, init_scale: float):
super().__init__()
self.width = width
self.c_fc = nn.Linear(width, width * 4)
self.c_proj = nn.Linear(width * 4, width)
self.gelu = nn.GELU()
init_linear(self.c_fc, init_scale)
init_linear(self.c_proj, init_scale)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class ResidualAttentionBlock(nn.Module):
def __init__(self, *, width: int, heads: int, init_scale: float = 1.0):
super().__init__()
self.attn = MultiheadAttention(
width=width,
heads=heads,
init_scale=init_scale,
)
self.ln_1 = nn.LayerNorm(width)
self.mlp = MLP(width=width, init_scale=init_scale)
self.ln_2 = nn.LayerNorm(width)
def forward(self, x: torch.Tensor):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
def __init__(
self,
*,
width: int,
layers: int,
heads: int,
init_scale: float = 0.25,
):
super().__init__()
self.width = width
self.layers = layers
init_scale = init_scale * math.sqrt(1.0 / width)
self.resblocks = nn.ModuleList(
[
ResidualAttentionBlock(
width=width,
heads=heads,
init_scale=init_scale,
)
for _ in range(layers)
]
)
def forward(self, x: torch.Tensor):
for block in self.resblocks:
x = block(x)
return x
class PointDiffusionTransformer(nn.Module):
def __init__(
self,
*,
input_channels: int = 3,
output_channels: int = 3,
width: int = 512,
layers: int = 12,
heads: int = 8,
init_scale: float = 0.25,
time_token_cond: bool = False,
):
super().__init__()
self.input_channels = input_channels
self.output_channels = output_channels
self.time_token_cond = time_token_cond
self.time_embed = MLP(
width=width,
init_scale=init_scale * math.sqrt(1.0 / width),
)
self.ln_pre = nn.LayerNorm(width)
self.backbone = Transformer(
width=width,
layers=layers,
heads=heads,
init_scale=init_scale,
)
self.ln_post = nn.LayerNorm(width)
self.input_proj = nn.Linear(input_channels, width)
self.output_proj = nn.Linear(width, output_channels)
with torch.no_grad():
self.output_proj.weight.zero_()
self.output_proj.bias.zero_()
def forward(self, x: torch.Tensor, t: torch.Tensor):
"""
:param x: an [N x C x T] tensor.
:param t: an [N] tensor.
:return: an [N x C' x T] tensor.
"""
t_embed = self.time_embed(timestep_embedding(t, self.backbone.width))
return self._forward_with_cond(x, [(t_embed, self.time_token_cond)])
def _forward_with_cond(
self, x: torch.Tensor, cond_as_token: List[Tuple[torch.Tensor, bool]]
) -> torch.Tensor:
h = self.input_proj(x.permute(0, 2, 1)) # NCL -> NLC
for emb, as_token in cond_as_token:
if not as_token:
h = h + emb[:, None]
extra_tokens = [
(emb[:, None] if len(emb.shape) == 2 else emb)
for emb, as_token in cond_as_token
if as_token
]
if len(extra_tokens):
h = torch.cat(extra_tokens + [h], dim=1)
h = self.ln_pre(h)
h = self.backbone(h)
h = self.ln_post(h)
if len(extra_tokens):
h = h[:, sum(h.shape[1] for h in extra_tokens) :]
h = self.output_proj(h)
return h.permute(0, 2, 1)
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=timesteps.device)
args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
class PointEDenoiser(BaseModule):
@dataclass
class Config(BaseModule.Config):
num_attention_heads: int = 8
in_channels: Optional[int] = None
out_channels: Optional[int] = None
num_layers: int = 12
width: int = 512
cond_dim: Optional[int] = None
cfg: Config
def configure(self) -> None:
self.denoiser = PointDiffusionTransformer(
input_channels=self.cfg.in_channels,
output_channels=self.cfg.out_channels,
width=self.cfg.width,
layers=self.cfg.num_layers,
heads=self.cfg.num_attention_heads,
init_scale=0.25,
time_token_cond=True,
)
self.cond_embed = nn.Sequential(
nn.LayerNorm(self.cfg.cond_dim),
nn.Linear(self.cfg.cond_dim, self.cfg.width),
)
def forward(
self,
x,
t,
condition=None,
):
# renormalize with the per-sample standard deviation
x_std = torch.std(x.reshape(x.shape[0], -1), dim=1, keepdim=True)
x = x / x_std.reshape(-1, *([1] * (len(x.shape) - 1)))
t_embed = self.denoiser.time_embed(
timestep_embedding(t, self.denoiser.backbone.width)
)
condition = self.cond_embed(condition)
cond = [(t_embed, True), (condition, True)]
x_denoised = self.denoiser._forward_with_cond(x, cond)
return x_denoised
|