File size: 6,762 Bytes
38dbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from dataclasses import dataclass, field
from typing import Callable, List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from jaxtyping import Float
from torch import Tensor
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd
from spar3d.models.utils import BaseModule, normalize
from spar3d.utils import get_device
def conditional_decorator(decorator_with_args, condition, *args, **kwargs):
def wrapper(fn):
if condition:
if len(kwargs) == 0:
return decorator_with_args
return decorator_with_args(*args, **kwargs)(fn)
else:
return fn
return wrapper
class PixelShuffleUpsampleNetwork(BaseModule):
@dataclass
class Config(BaseModule.Config):
in_channels: int = 1024
out_channels: int = 40
scale_factor: int = 4
conv_layers: int = 4
conv_kernel_size: int = 3
cfg: Config
def configure(self) -> None:
layers = []
output_channels = self.cfg.out_channels * self.cfg.scale_factor**2
in_channels = self.cfg.in_channels
for i in range(self.cfg.conv_layers):
cur_out_channels = (
in_channels if i != self.cfg.conv_layers - 1 else output_channels
)
layers.append(
nn.Conv2d(
in_channels,
cur_out_channels,
self.cfg.conv_kernel_size,
padding=(self.cfg.conv_kernel_size - 1) // 2,
)
)
if i != self.cfg.conv_layers - 1:
layers.append(nn.ReLU(inplace=True))
layers.append(nn.PixelShuffle(self.cfg.scale_factor))
self.upsample = nn.Sequential(*layers)
def forward(
self, triplanes: Float[Tensor, "B 3 Ci Hp Wp"]
) -> Float[Tensor, "B 3 Co Hp2 Wp2"]:
return rearrange(
self.upsample(
rearrange(triplanes, "B Np Ci Hp Wp -> (B Np) Ci Hp Wp", Np=3)
),
"(B Np) Co Hp Wp -> B Np Co Hp Wp",
Np=3,
)
class _TruncExp(Function): # pylint: disable=abstract-method
# Implementation from torch-ngp:
# https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
@staticmethod
@conditional_decorator(
custom_fwd, "cuda" in get_device(), cast_inputs=torch.float32
)
def forward(ctx, x): # pylint: disable=arguments-differ
ctx.save_for_backward(x)
return torch.exp(x)
@staticmethod
@conditional_decorator(custom_bwd, "cuda" in get_device())
def backward(ctx, g): # pylint: disable=arguments-differ
x = ctx.saved_tensors[0]
return g * torch.exp(torch.clamp(x, max=15))
trunc_exp = _TruncExp.apply
def get_activation(name) -> Callable:
if name is None:
return lambda x: x
name = name.lower()
if name == "none" or name == "linear" or name == "identity":
return lambda x: x
elif name == "lin2srgb":
return lambda x: torch.where(
x > 0.0031308,
torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
12.92 * x,
).clamp(0.0, 1.0)
elif name == "exp":
return lambda x: torch.exp(x)
elif name == "shifted_exp":
return lambda x: torch.exp(x - 1.0)
elif name == "trunc_exp":
return trunc_exp
elif name == "shifted_trunc_exp":
return lambda x: trunc_exp(x - 1.0)
elif name == "sigmoid":
return lambda x: torch.sigmoid(x)
elif name == "tanh":
return lambda x: torch.tanh(x)
elif name == "shifted_softplus":
return lambda x: F.softplus(x - 1.0)
elif name == "scale_-11_01":
return lambda x: x * 0.5 + 0.5
elif name == "negative":
return lambda x: -x
elif name == "normalize_channel_last":
return lambda x: normalize(x)
elif name == "normalize_channel_first":
return lambda x: normalize(x, dim=1)
else:
try:
return getattr(F, name)
except AttributeError:
raise ValueError(f"Unknown activation function: {name}")
class LambdaModule(torch.nn.Module):
def __init__(self, lambd: Callable[[torch.Tensor], torch.Tensor]):
super().__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
def get_activation_module(name) -> torch.nn.Module:
return LambdaModule(get_activation(name))
@dataclass
class HeadSpec:
name: str
out_channels: int
n_hidden_layers: int
output_activation: Optional[str] = None
out_bias: float = 0.0
class MaterialMLP(BaseModule):
@dataclass
class Config(BaseModule.Config):
in_channels: int = 120
n_neurons: int = 64
activation: str = "silu"
heads: List[HeadSpec] = field(default_factory=lambda: [])
cfg: Config
def configure(self) -> None:
assert len(self.cfg.heads) > 0
heads = {}
for head in self.cfg.heads:
head_layers = []
for i in range(head.n_hidden_layers):
head_layers += [
nn.Linear(
self.cfg.in_channels if i == 0 else self.cfg.n_neurons,
self.cfg.n_neurons,
),
self.make_activation(self.cfg.activation),
]
head_layers += [
nn.Linear(
self.cfg.n_neurons,
head.out_channels,
),
]
heads[head.name] = nn.Sequential(*head_layers)
self.heads = nn.ModuleDict(heads)
def make_activation(self, activation):
if activation == "relu":
return nn.ReLU(inplace=True)
elif activation == "silu":
return nn.SiLU(inplace=True)
else:
raise NotImplementedError
def keys(self):
return self.heads.keys()
def forward(
self, x, include: Optional[List] = None, exclude: Optional[List] = None
):
if include is not None and exclude is not None:
raise ValueError("Cannot specify both include and exclude.")
if include is not None:
heads = [h for h in self.cfg.heads if h.name in include]
elif exclude is not None:
heads = [h for h in self.cfg.heads if h.name not in exclude]
else:
heads = self.cfg.heads
out = {
head.name: get_activation(head.output_activation)(
self.heads[head.name](x) + head.out_bias
)
for head in heads
}
return out
|