File size: 6,762 Bytes
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from dataclasses import dataclass, field
from typing import Callable, List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from jaxtyping import Float
from torch import Tensor
from torch.autograd import Function
from torch.cuda.amp import custom_bwd, custom_fwd

from spar3d.models.utils import BaseModule, normalize
from spar3d.utils import get_device


def conditional_decorator(decorator_with_args, condition, *args, **kwargs):
    def wrapper(fn):
        if condition:
            if len(kwargs) == 0:
                return decorator_with_args
            return decorator_with_args(*args, **kwargs)(fn)
        else:
            return fn

    return wrapper


class PixelShuffleUpsampleNetwork(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        in_channels: int = 1024
        out_channels: int = 40
        scale_factor: int = 4

        conv_layers: int = 4
        conv_kernel_size: int = 3

    cfg: Config

    def configure(self) -> None:
        layers = []
        output_channels = self.cfg.out_channels * self.cfg.scale_factor**2

        in_channels = self.cfg.in_channels
        for i in range(self.cfg.conv_layers):
            cur_out_channels = (
                in_channels if i != self.cfg.conv_layers - 1 else output_channels
            )
            layers.append(
                nn.Conv2d(
                    in_channels,
                    cur_out_channels,
                    self.cfg.conv_kernel_size,
                    padding=(self.cfg.conv_kernel_size - 1) // 2,
                )
            )
            if i != self.cfg.conv_layers - 1:
                layers.append(nn.ReLU(inplace=True))

        layers.append(nn.PixelShuffle(self.cfg.scale_factor))

        self.upsample = nn.Sequential(*layers)

    def forward(
        self, triplanes: Float[Tensor, "B 3 Ci Hp Wp"]
    ) -> Float[Tensor, "B 3 Co Hp2 Wp2"]:
        return rearrange(
            self.upsample(
                rearrange(triplanes, "B Np Ci Hp Wp -> (B Np) Ci Hp Wp", Np=3)
            ),
            "(B Np) Co Hp Wp -> B Np Co Hp Wp",
            Np=3,
        )


class _TruncExp(Function):  # pylint: disable=abstract-method
    # Implementation from torch-ngp:
    # https://github.com/ashawkey/torch-ngp/blob/93b08a0d4ec1cc6e69d85df7f0acdfb99603b628/activation.py
    @staticmethod
    @conditional_decorator(
        custom_fwd, "cuda" in get_device(), cast_inputs=torch.float32
    )
    def forward(ctx, x):  # pylint: disable=arguments-differ
        ctx.save_for_backward(x)
        return torch.exp(x)

    @staticmethod
    @conditional_decorator(custom_bwd, "cuda" in get_device())
    def backward(ctx, g):  # pylint: disable=arguments-differ
        x = ctx.saved_tensors[0]
        return g * torch.exp(torch.clamp(x, max=15))


trunc_exp = _TruncExp.apply


def get_activation(name) -> Callable:
    if name is None:
        return lambda x: x
    name = name.lower()
    if name == "none" or name == "linear" or name == "identity":
        return lambda x: x
    elif name == "lin2srgb":
        return lambda x: torch.where(
            x > 0.0031308,
            torch.pow(torch.clamp(x, min=0.0031308), 1.0 / 2.4) * 1.055 - 0.055,
            12.92 * x,
        ).clamp(0.0, 1.0)
    elif name == "exp":
        return lambda x: torch.exp(x)
    elif name == "shifted_exp":
        return lambda x: torch.exp(x - 1.0)
    elif name == "trunc_exp":
        return trunc_exp
    elif name == "shifted_trunc_exp":
        return lambda x: trunc_exp(x - 1.0)
    elif name == "sigmoid":
        return lambda x: torch.sigmoid(x)
    elif name == "tanh":
        return lambda x: torch.tanh(x)
    elif name == "shifted_softplus":
        return lambda x: F.softplus(x - 1.0)
    elif name == "scale_-11_01":
        return lambda x: x * 0.5 + 0.5
    elif name == "negative":
        return lambda x: -x
    elif name == "normalize_channel_last":
        return lambda x: normalize(x)
    elif name == "normalize_channel_first":
        return lambda x: normalize(x, dim=1)
    else:
        try:
            return getattr(F, name)
        except AttributeError:
            raise ValueError(f"Unknown activation function: {name}")


class LambdaModule(torch.nn.Module):
    def __init__(self, lambd: Callable[[torch.Tensor], torch.Tensor]):
        super().__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


def get_activation_module(name) -> torch.nn.Module:
    return LambdaModule(get_activation(name))


@dataclass
class HeadSpec:
    name: str
    out_channels: int
    n_hidden_layers: int
    output_activation: Optional[str] = None
    out_bias: float = 0.0


class MaterialMLP(BaseModule):
    @dataclass
    class Config(BaseModule.Config):
        in_channels: int = 120
        n_neurons: int = 64
        activation: str = "silu"
        heads: List[HeadSpec] = field(default_factory=lambda: [])

    cfg: Config

    def configure(self) -> None:
        assert len(self.cfg.heads) > 0
        heads = {}
        for head in self.cfg.heads:
            head_layers = []
            for i in range(head.n_hidden_layers):
                head_layers += [
                    nn.Linear(
                        self.cfg.in_channels if i == 0 else self.cfg.n_neurons,
                        self.cfg.n_neurons,
                    ),
                    self.make_activation(self.cfg.activation),
                ]
            head_layers += [
                nn.Linear(
                    self.cfg.n_neurons,
                    head.out_channels,
                ),
            ]
            heads[head.name] = nn.Sequential(*head_layers)
        self.heads = nn.ModuleDict(heads)

    def make_activation(self, activation):
        if activation == "relu":
            return nn.ReLU(inplace=True)
        elif activation == "silu":
            return nn.SiLU(inplace=True)
        else:
            raise NotImplementedError

    def keys(self):
        return self.heads.keys()

    def forward(
        self, x, include: Optional[List] = None, exclude: Optional[List] = None
    ):
        if include is not None and exclude is not None:
            raise ValueError("Cannot specify both include and exclude.")
        if include is not None:
            heads = [h for h in self.cfg.heads if h.name in include]
        elif exclude is not None:
            heads = [h for h in self.cfg.heads if h.name not in exclude]
        else:
            heads = self.cfg.heads

        out = {
            head.name: get_activation(head.output_activation)(
                self.heads[head.name](x) + head.out_bias
            )
            for head in heads
        }

        return out