File size: 29,706 Bytes
38dbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
# Copyright 2023 The University of York. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified by Mark Boss
"""RENI field"""
import contextlib
from dataclasses import dataclass
from typing import Dict, Literal, Optional
import torch
from einops.layers.torch import Rearrange
from jaxtyping import Float
from torch import Tensor, nn
from spar3d.models.network import get_activation_module, trunc_exp
from spar3d.models.utils import BaseModule
from .components.film_siren import FiLMSiren
from .components.siren import Siren
from .components.transformer_decoder import Decoder
from .components.vn_layers import VNInvariant, VNLinear
# from nerfstudio.cameras.rays import RaySamples
def expected_sin(x_means: torch.Tensor, x_vars: torch.Tensor) -> torch.Tensor:
"""Computes the expected value of sin(y) where y ~ N(x_means, x_vars)
Args:
x_means: Mean values.
x_vars: Variance of values.
Returns:
torch.Tensor: The expected value of sin.
"""
return torch.exp(-0.5 * x_vars) * torch.sin(x_means)
class NeRFEncoding(torch.nn.Module):
"""Multi-scale sinousoidal encodings. Support ``integrated positional encodings`` if covariances are provided.
Each axis is encoded with frequencies ranging from 2^min_freq_exp to 2^max_freq_exp.
Args:
in_dim: Input dimension of tensor
num_frequencies: Number of encoded frequencies per axis
min_freq_exp: Minimum frequency exponent
max_freq_exp: Maximum frequency exponent
include_input: Append the input coordinate to the encoding
"""
def __init__(
self,
in_dim: int,
num_frequencies: int,
min_freq_exp: float,
max_freq_exp: float,
include_input: bool = False,
off_axis: bool = False,
) -> None:
super().__init__()
self.in_dim = in_dim
self.num_frequencies = num_frequencies
self.min_freq = min_freq_exp
self.max_freq = max_freq_exp
self.include_input = include_input
self.off_axis = off_axis
self.P = torch.tensor(
[
[0.8506508, 0, 0.5257311],
[0.809017, 0.5, 0.309017],
[0.5257311, 0.8506508, 0],
[1, 0, 0],
[0.809017, 0.5, -0.309017],
[0.8506508, 0, -0.5257311],
[0.309017, 0.809017, -0.5],
[0, 0.5257311, -0.8506508],
[0.5, 0.309017, -0.809017],
[0, 1, 0],
[-0.5257311, 0.8506508, 0],
[-0.309017, 0.809017, -0.5],
[0, 0.5257311, 0.8506508],
[-0.309017, 0.809017, 0.5],
[0.309017, 0.809017, 0.5],
[0.5, 0.309017, 0.809017],
[0.5, -0.309017, 0.809017],
[0, 0, 1],
[-0.5, 0.309017, 0.809017],
[-0.809017, 0.5, 0.309017],
[-0.809017, 0.5, -0.309017],
]
).T
def get_out_dim(self) -> int:
if self.in_dim is None:
raise ValueError("Input dimension has not been set")
out_dim = self.in_dim * self.num_frequencies * 2
if self.off_axis:
out_dim = self.P.shape[1] * self.num_frequencies * 2
if self.include_input:
out_dim += self.in_dim
return out_dim
def forward(
self,
in_tensor: Float[Tensor, "*b input_dim"],
covs: Optional[Float[Tensor, "*b input_dim input_dim"]] = None,
) -> Float[Tensor, "*b output_dim"]:
"""Calculates NeRF encoding. If covariances are provided the encodings will be integrated as proposed
in mip-NeRF.
Args:
in_tensor: For best performance, the input tensor should be between 0 and 1.
covs: Covariances of input points.
Returns:
Output values will be between -1 and 1
"""
# TODO check scaling here but just comment it for now
# in_tensor = 2 * torch.pi * in_tensor # scale to [0, 2pi]
freqs = 2 ** torch.linspace(
self.min_freq, self.max_freq, self.num_frequencies
).to(in_tensor.device)
# freqs = 2 ** (
# torch.sin(torch.linspace(self.min_freq, torch.pi / 2.0, self.num_frequencies)) * self.max_freq
# ).to(in_tensor.device)
# freqs = 2 ** (
# torch.linspace(self.min_freq, 1.0, self.num_frequencies).to(in_tensor.device) ** 0.2 * self.max_freq
# )
if self.off_axis:
scaled_inputs = (
torch.matmul(in_tensor, self.P.to(in_tensor.device))[..., None] * freqs
)
else:
scaled_inputs = (
in_tensor[..., None] * freqs
) # [..., "input_dim", "num_scales"]
scaled_inputs = scaled_inputs.view(
*scaled_inputs.shape[:-2], -1
) # [..., "input_dim" * "num_scales"]
if covs is None:
encoded_inputs = torch.sin(
torch.cat([scaled_inputs, scaled_inputs + torch.pi / 2.0], dim=-1)
)
else:
input_var = (
torch.diagonal(covs, dim1=-2, dim2=-1)[..., :, None]
* freqs[None, :] ** 2
)
input_var = input_var.reshape((*input_var.shape[:-2], -1))
encoded_inputs = expected_sin(
torch.cat([scaled_inputs, scaled_inputs + torch.pi / 2.0], dim=-1),
torch.cat(2 * [input_var], dim=-1),
)
if self.include_input:
encoded_inputs = torch.cat([encoded_inputs, in_tensor], dim=-1)
return encoded_inputs
class RENIField(BaseModule):
@dataclass
class Config(BaseModule.Config):
"""Configuration for model instantiation"""
fixed_decoder: bool = False
"""Whether to fix the decoder weights"""
equivariance: str = "SO2"
"""Type of equivariance to use: None, SO2, SO3"""
axis_of_invariance: str = "y"
"""Which axis should SO2 equivariance be invariant to: x, y, z"""
invariant_function: str = "GramMatrix"
"""Type of invariant function to use: GramMatrix, VN"""
conditioning: str = "Concat"
"""Type of conditioning to use: FiLM, Concat, Attention"""
positional_encoding: str = "NeRF"
"""Type of positional encoding to use. Currently only NeRF is supported"""
encoded_input: str = "Directions"
"""Type of input to encode: None, Directions, Conditioning, Both"""
latent_dim: int = 36
"""Dimensionality of latent code, N for a latent code size of (N x 3)"""
hidden_layers: int = 3
"""Number of hidden layers"""
hidden_features: int = 128
"""Number of hidden features"""
mapping_layers: int = 3
"""Number of mapping layers"""
mapping_features: int = 128
"""Number of mapping features"""
num_attention_heads: int = 8
"""Number of attention heads"""
num_attention_layers: int = 3
"""Number of attention layers"""
out_features: int = 3 # RGB
"""Number of output features"""
last_layer_linear: bool = False
"""Whether to use a linear layer as the last layer"""
output_activation: str = "exp"
"""Activation function for output layer: sigmoid, tanh, relu, exp, None"""
first_omega_0: float = 30.0
"""Omega_0 for first layer"""
hidden_omega_0: float = 30.0
"""Omega_0 for hidden layers"""
fixed_decoder: bool = False
"""Whether to fix the decoder weights"""
old_implementation: bool = False
"""Whether to match implementation of old RENI, when using old checkpoints"""
cfg: Config
def configure(self):
self.equivariance = self.cfg.equivariance
self.conditioning = self.cfg.conditioning
self.latent_dim = self.cfg.latent_dim
self.hidden_layers = self.cfg.hidden_layers
self.hidden_features = self.cfg.hidden_features
self.mapping_layers = self.cfg.mapping_layers
self.mapping_features = self.cfg.mapping_features
self.out_features = self.cfg.out_features
self.last_layer_linear = self.cfg.last_layer_linear
self.output_activation = self.cfg.output_activation
self.first_omega_0 = self.cfg.first_omega_0
self.hidden_omega_0 = self.cfg.hidden_omega_0
self.old_implementation = self.cfg.old_implementation
self.axis_of_invariance = ["x", "y", "z"].index(self.cfg.axis_of_invariance)
self.fixed_decoder = self.cfg.fixed_decoder
if self.cfg.invariant_function == "GramMatrix":
self.invariant_function = self.gram_matrix_invariance
else:
self.vn_proj_in = nn.Sequential(
Rearrange("... c -> ... 1 c"),
VNLinear(dim_in=1, dim_out=1, bias_epsilon=0),
)
dim_coor = 2 if self.cfg.equivariance == "SO2" else 3
self.vn_invar = VNInvariant(dim=1, dim_coor=dim_coor)
self.invariant_function = self.vn_invariance
self.network = self.setup_network()
if self.fixed_decoder:
for param in self.network.parameters():
param.requires_grad = False
if self.cfg.invariant_function == "VN":
for param in self.vn_proj_in.parameters():
param.requires_grad = False
for param in self.vn_invar.parameters():
param.requires_grad = False
@contextlib.contextmanager
def hold_decoder_fixed(self):
"""Context manager to fix the decoder weights
Example usage:
```
with instance_of_RENIField.hold_decoder_fixed():
# do stuff
```
"""
prev_state_network = {
name: p.requires_grad for name, p in self.network.named_parameters()
}
for param in self.network.parameters():
param.requires_grad = False
if self.cfg.invariant_function == "VN":
prev_state_proj_in = {
k: p.requires_grad for k, p in self.vn_proj_in.named_parameters()
}
prev_state_invar = {
k: p.requires_grad for k, p in self.vn_invar.named_parameters()
}
for param in self.vn_proj_in.parameters():
param.requires_grad = False
for param in self.vn_invar.parameters():
param.requires_grad = False
prev_decoder_state = self.fixed_decoder
self.fixed_decoder = True
try:
yield
finally:
# Restore the previous requires_grad state
for name, param in self.network.named_parameters():
param.requires_grad = prev_state_network[name]
if self.cfg.invariant_function == "VN":
for name, param in self.vn_proj_in.named_parameters():
param.requires_grad_(prev_state_proj_in[name])
for name, param in self.vn_invar.named_parameters():
param.requires_grad_(prev_state_invar[name])
self.fixed_decoder = prev_decoder_state
def vn_invariance(
self,
Z: Float[Tensor, "B latent_dim 3"],
D: Float[Tensor, "B num_rays 3"],
equivariance: Literal["None", "SO2", "SO3"] = "SO2",
axis_of_invariance: int = 1,
):
"""Generates a batched invariant representation from latent code Z and direction coordinates D.
Args:
Z: [B, latent_dim, 3] - Latent code.
D: [B num_rays, 3] - Direction coordinates.
equivariance: The type of equivariance to use. Options are 'None', 'SO2', 'SO3'.
axis_of_invariance: The axis of rotation invariance. Should be 0 (x-axis), 1 (y-axis), or 2 (z-axis).
Returns:
Tuple[Tensor, Tensor]: directional_input, conditioning_input
"""
assert 0 <= axis_of_invariance < 3, "axis_of_invariance should be 0, 1, or 2."
other_axes = [i for i in range(3) if i != axis_of_invariance]
B, latent_dim, _ = Z.shape
_, num_rays, _ = D.shape
if equivariance == "None":
# get inner product between latent code and direction coordinates
innerprod = torch.sum(
Z.unsqueeze(1) * D.unsqueeze(2), dim=-1
) # [B, num_rays, latent_dim]
z_input = (
Z.flatten(start_dim=1).unsqueeze(1).expand(B, num_rays, latent_dim * 3)
) # [B, num_rays, latent_dim * 3]
return innerprod, z_input
if equivariance == "SO2":
z_other = torch.stack(
(Z[..., other_axes[0]], Z[..., other_axes[1]]), -1
) # [B, latent_dim, 2]
d_other = torch.stack(
(D[..., other_axes[0]], D[..., other_axes[1]]), -1
).unsqueeze(2) # [B, num_rays, 1, 2]
d_other = d_other.expand(
B, num_rays, latent_dim, 2
) # [B, num_rays, latent_dim, 2]
z_other_emb = self.vn_proj_in(z_other) # [B, latent_dim, 1, 2]
z_other_invar = self.vn_invar(z_other_emb) # [B, latent_dim, 2]
# Get invariant component of Z along the axis of invariance
z_invar = Z[..., axis_of_invariance].unsqueeze(-1) # [B, latent_dim, 1]
# Innerproduct between projection of Z and D on the plane orthogonal to the axis of invariance.
# This encodes the rotational information. This is rotation-equivariant to rotations of either Z
# or D and is invariant to rotations of both Z and D.
innerprod = (z_other.unsqueeze(1) * d_other).sum(
dim=-1
) # [B, num_rays, latent_dim]
# Compute norm along the axes orthogonal to the axis of invariance
d_other_norm = torch.sqrt(
D[..., other_axes[0]] ** 2 + D[..., other_axes[1]] ** 2
).unsqueeze(-1) # [B num_rays, 1]
# Get invariant component of D along the axis of invariance
d_invar = D[..., axis_of_invariance].unsqueeze(-1) # [B, num_rays, 1]
directional_input = torch.cat(
(innerprod, d_invar, d_other_norm), -1
) # [B, num_rays, latent_dim + 2]
conditioning_input = (
torch.cat((z_other_invar, z_invar), dim=-1)
.flatten(1)
.unsqueeze(1)
.expand(B, num_rays, latent_dim * 3)
) # [B, num_rays, latent_dim * 3]
return directional_input, conditioning_input
if equivariance == "SO3":
z = self.vn_proj_in(Z) # [B, latent_dim, 1, 3]
z_invar = self.vn_invar(z) # [B, latent_dim, 3]
conditioning_input = (
z_invar.flatten(1).unsqueeze(1).expand(B, num_rays, latent_dim)
) # [B, num_rays, latent_dim * 3]
# D [B, num_rays, 3] -> [B, num_rays, 1, 3]
# Z [B, latent_dim, 3] -> [B, 1, latent_dim, 3]
innerprod = torch.sum(
Z.unsqueeze(1) * D.unsqueeze(2), dim=-1
) # [B, num_rays, latent_dim]
return innerprod, conditioning_input
def gram_matrix_invariance(
self,
Z: Float[Tensor, "B latent_dim 3"],
D: Float[Tensor, "B num_rays 3"],
equivariance: Literal["None", "SO2", "SO3"] = "SO2",
axis_of_invariance: int = 1,
):
"""Generates an invariant representation from latent code Z and direction coordinates D.
Args:
Z (torch.Tensor): Latent code (B x latent_dim x 3)
D (torch.Tensor): Direction coordinates (B x num_rays x 3)
equivariance (str): Type of equivariance to use. Options are 'none', 'SO2', and 'SO3'
axis_of_invariance (int): The axis of rotation invariance. Should be 0 (x-axis), 1 (y-axis), or 2 (z-axis).
Default is 1 (y-axis).
Returns:
torch.Tensor: Invariant representation
"""
assert 0 <= axis_of_invariance < 3, "axis_of_invariance should be 0, 1, or 2."
other_axes = [i for i in range(3) if i != axis_of_invariance]
B, latent_dim, _ = Z.shape
_, num_rays, _ = D.shape
if equivariance == "None":
# get inner product between latent code and direction coordinates
innerprod = torch.sum(
Z.unsqueeze(1) * D.unsqueeze(2), dim=-1
) # [B, num_rays, latent_dim]
z_input = (
Z.flatten(start_dim=1).unsqueeze(1).expand(B, num_rays, latent_dim * 3)
) # [B, num_rays, latent_dim * 3]
return innerprod, z_input
if equivariance == "SO2":
# Select components along axes orthogonal to the axis of invariance
z_other = torch.stack(
(Z[..., other_axes[0]], Z[..., other_axes[1]]), -1
) # [B, latent_dim, 2]
d_other = torch.stack(
(D[..., other_axes[0]], D[..., other_axes[1]]), -1
).unsqueeze(2) # [B, num_rays, 1, 2]
d_other = d_other.expand(
B, num_rays, latent_dim, 2
) # size becomes [B, num_rays, latent_dim, 2]
# Invariant representation of Z, gram matrix G=Z*Z' is size num_rays x latent_dim x latent_dim
G = torch.bmm(z_other, torch.transpose(z_other, 1, 2))
# Flatten G to be size B x latent_dim^2
z_other_invar = G.flatten(start_dim=1)
# Get invariant component of Z along the axis of invariance
z_invar = Z[..., axis_of_invariance] # [B, latent_dim]
# Innerprod is size num_rays x latent_dim
innerprod = (z_other.unsqueeze(1) * d_other).sum(
dim=-1
) # [B, num_rays, latent_dim]
# Compute norm along the axes orthogonal to the axis of invariance
d_other_norm = torch.sqrt(
D[..., other_axes[0]] ** 2 + D[..., other_axes[1]] ** 2
).unsqueeze(-1) # [B, num_rays, 1]
# Get invariant component of D along the axis of invariance
d_invar = D[..., axis_of_invariance].unsqueeze(-1) # [B, num_rays, 1]
if not self.old_implementation:
directional_input = torch.cat(
(innerprod, d_invar, d_other_norm), -1
) # [B, num_rays, latent_dim + 2]
conditioning_input = (
torch.cat((z_other_invar, z_invar), -1)
.unsqueeze(1)
.expand(B, num_rays, latent_dim * 3)
) # [B, num_rays, latent_dim^2 + latent_dim]
else:
# this is matching the previous implementation of RENI, needed if using old checkpoints
z_other_invar = z_other_invar.unsqueeze(1).expand(B, num_rays, -1)
z_invar = z_invar.unsqueeze(1).expand(B, num_rays, -1)
return torch.cat(
(innerprod, z_other_invar, d_other_norm, z_invar, d_invar), 1
)
return directional_input, conditioning_input
if equivariance == "SO3":
G = Z @ torch.transpose(Z, 1, 2) # [B, latent_dim, latent_dim]
innerprod = torch.sum(
Z.unsqueeze(1) * D.unsqueeze(2), dim=-1
) # [B, num_rays, latent_dim]
z_invar = (
G.flatten(start_dim=1).unsqueeze(1).expand(B, num_rays, -1)
) # [B, num_rays, latent_dim^2]
return innerprod, z_invar
def setup_network(self):
"""Sets up the network architecture"""
base_input_dims = {
"VN": {
"None": {
"direction": self.latent_dim,
"conditioning": self.latent_dim * 3,
},
"SO2": {
"direction": self.latent_dim + 2,
"conditioning": self.latent_dim * 3,
},
"SO3": {
"direction": self.latent_dim,
"conditioning": self.latent_dim * 3,
},
},
"GramMatrix": {
"None": {
"direction": self.latent_dim,
"conditioning": self.latent_dim * 3,
},
"SO2": {
"direction": self.latent_dim + 2,
"conditioning": self.latent_dim**2 + self.latent_dim,
},
"SO3": {
"direction": self.latent_dim,
"conditioning": self.latent_dim**2,
},
},
}
# Extract the necessary input dimensions
input_types = ["direction", "conditioning"]
input_dims = {
key: base_input_dims[self.cfg.invariant_function][self.cfg.equivariance][
key
]
for key in input_types
}
# Helper function to create NeRF encoding
def create_nerf_encoding(in_dim):
return NeRFEncoding(
in_dim=in_dim,
num_frequencies=2,
min_freq_exp=0.0,
max_freq_exp=2.0,
include_input=True,
)
# Dictionary-based encoding setup
encoding_setup = {
"None": [],
"Conditioning": ["conditioning"],
"Directions": ["direction"],
"Both": ["direction", "conditioning"],
}
# Setting up the required encodings
for input_type in encoding_setup.get(self.cfg.encoded_input, []):
# create self.{input_type}_encoding and update input_dims
setattr(
self,
f"{input_type}_encoding",
create_nerf_encoding(input_dims[input_type]),
)
input_dims[input_type] = getattr(
self, f"{input_type}_encoding"
).get_out_dim()
output_activation = get_activation_module(self.cfg.output_activation)
network = None
if self.conditioning == "Concat":
network = Siren(
in_dim=input_dims["direction"] + input_dims["conditioning"],
hidden_layers=self.hidden_layers,
hidden_features=self.hidden_features,
out_dim=self.out_features,
outermost_linear=self.last_layer_linear,
first_omega_0=self.first_omega_0,
hidden_omega_0=self.hidden_omega_0,
out_activation=output_activation,
)
elif self.conditioning == "FiLM":
network = FiLMSiren(
in_dim=input_dims["direction"],
hidden_layers=self.hidden_layers,
hidden_features=self.hidden_features,
mapping_network_in_dim=input_dims["conditioning"],
mapping_network_layers=self.mapping_layers,
mapping_network_features=self.mapping_features,
out_dim=self.out_features,
outermost_linear=True,
out_activation=output_activation,
)
elif self.conditioning == "Attention":
# transformer where K, V is from conditioning input and Q is from pos encoded directional input
network = Decoder(
in_dim=input_dims["direction"],
conditioning_input_dim=input_dims["conditioning"],
hidden_features=self.cfg.hidden_features,
num_heads=self.cfg.num_attention_heads,
num_layers=self.cfg.num_attention_layers,
out_activation=output_activation,
)
assert network is not None, "unknown conditioning type"
return network
def apply_positional_encoding(self, directional_input, conditioning_input):
# conditioning on just invariant directional input
if self.cfg.encoded_input == "Conditioning":
conditioning_input = self.conditioning_encoding(
conditioning_input
) # [num_rays, embedding_dim]
elif self.cfg.encoded_input == "Directions":
directional_input = self.direction_encoding(
directional_input
) # [num_rays, embedding_dim]
elif self.cfg.encoded_input == "Both":
directional_input = self.direction_encoding(directional_input)
conditioning_input = self.conditioning_encoding(conditioning_input)
return directional_input, conditioning_input
def get_outputs(
self,
rays_d: Float[Tensor, "batch num_rays 3"], # type: ignore
latent_codes: Float[Tensor, "batch_size latent_dim 3"], # type: ignore
rotation: Optional[Float[Tensor, "batch_size 3 3"]] = None, # type: ignore
scale: Optional[Float[Tensor, "batch_size"]] = None, # type: ignore
) -> Dict[str, Tensor]:
"""Returns the outputs of the field.
Args:
ray_samples: [batch_size num_rays 3]
latent_codes: [batch_size, latent_dim, 3]
rotation: [batch_size, 3, 3]
scale: [batch_size]
"""
if rotation is not None:
if len(rotation.shape) == 3: # [batch_size, 3, 3]
# Expand latent_codes to match [batch_size, latent_dim, 3]
latent_codes = torch.einsum(
"bik,blk->bli",
rotation,
latent_codes,
)
else:
raise NotImplementedError(
"Unsupported rotation shape. Expected [batch_size, 3, 3]."
)
B, num_rays, _ = rays_d.shape
_, latent_dim, _ = latent_codes.shape
if not self.old_implementation:
directional_input, conditioning_input = self.invariant_function(
latent_codes,
rays_d,
equivariance=self.equivariance,
axis_of_invariance=self.axis_of_invariance,
) # [B, num_rays, 3]
if self.cfg.positional_encoding == "NeRF":
directional_input, conditioning_input = self.apply_positional_encoding(
directional_input, conditioning_input
)
if self.conditioning == "Concat":
model_outputs = self.network(
torch.cat((directional_input, conditioning_input), dim=-1).reshape(
B * num_rays, -1
)
).view(B, num_rays, 3) # returns -> [B num_rays, 3]
elif self.conditioning == "FiLM":
model_outputs = self.network(
directional_input.reshape(B * num_rays, -1),
conditioning_input.reshape(B * num_rays, -1),
).view(B, num_rays, 3) # returns -> [B num_rays, 3]
elif self.conditioning == "Attention":
model_outputs = self.network(
directional_input.reshape(B * num_rays, -1),
conditioning_input.reshape(B * num_rays, -1),
).view(B, num_rays, 3) # returns -> [B num_rays, 3]
else:
# in the old implementation directions were sampled with y-up not z-up so need to swap y and z in directions
directions = torch.stack(
(rays_d[..., 0], rays_d[..., 2], rays_d[..., 1]), -1
)
model_input = self.invariant_function(
latent_codes,
directions,
equivariance=self.equivariance,
axis_of_invariance=self.axis_of_invariance,
) # [B, num_rays, 3]
model_outputs = self.network(model_input.view(B * num_rays, -1)).view(
B, num_rays, 3
)
outputs = {}
if scale is not None:
scale = trunc_exp(scale) # [num_rays] exp to ensure positive
model_outputs = model_outputs * scale.view(-1, 1, 1) # [num_rays, 3]
outputs["rgb"] = model_outputs
return outputs
def forward(
self,
rays_d: Float[Tensor, "batch num_rays 3"], # type: ignore
latent_codes: Float[Tensor, "batch_size latent_dim 3"], # type: ignore
rotation: Optional[Float[Tensor, "batch_size 3 3"]] = None, # type: ignore
scale: Optional[Float[Tensor, "batch_size"]] = None, # type: ignore
) -> Dict[str, Tensor]:
"""Evaluates spherical field for a given ray bundle and rotation.
Args:
ray_samples: [B num_rays 3]
latent_codes: [B, num_rays, latent_dim, 3]
rotation: [batch_size, 3, 3]
scale: [batch_size]
Returns:
Dict[str, Tensor]: A dictionary containing the outputs of the field.
"""
return self.get_outputs(
rays_d=rays_d,
latent_codes=latent_codes,
rotation=rotation,
scale=scale,
)
|