File size: 26,933 Bytes
38dbec8 a399d55 c2f384d a399d55 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 e2ccc8a 38dbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
import os
import random
import tempfile
import time
from contextlib import nullcontext
from functools import lru_cache
from typing import Any
import gradio as gr
import numpy as np
import torch
import trimesh
from gradio_litmodel3d import LitModel3D
from gradio_pointcloudeditor import PointCloudEditor
from PIL import Image
from transparent_background import Remover
os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
os.system("pip install ./deps/pynim-0.0.3-cp310-cp310-linux_x86_64.whl")
import spar3d.utils as spar3d_utils
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
bg_remover = Remover() # default setting
COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
# Cached. Doesn't change
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
COND_FOVY, COND_HEIGHT, COND_WIDTH
)
generated_files = []
# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
import shutil
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
device = spar3d_utils.get_device()
model = SPAR3D.from_pretrained(
"stabilityai/stable-point-aware-3d",
config_name="config.yaml",
weight_name="model.safetensors",
)
model.eval()
model = model.to(device)
example_files = [
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]
def forward_model(
batch,
system,
guidance_scale=3.0,
seed=0,
device="cuda",
remesh_option="none",
vertex_count=-1,
texture_resolution=1024,
):
batch_size = batch["rgb_cond"].shape[0]
# prepare the condition for point cloud generation
# set seed
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
cond_tokens = system.forward_pdiff_cond(batch)
if "pc_cond" not in batch:
sample_iter = system.sampler.sample_batch_progressive(
batch_size,
cond_tokens,
guidance_scale=guidance_scale,
device=device,
)
for x in sample_iter:
samples = x["xstart"]
batch["pc_cond"] = samples.permute(0, 2, 1).float()
batch["pc_cond"] = spar3d_utils.normalize_pc_bbox(batch["pc_cond"])
# subsample to the 512 points
batch["pc_cond"] = batch["pc_cond"][
:, torch.randperm(batch["pc_cond"].shape[1])[:512]
]
# get the point cloud
xyz = batch["pc_cond"][0, :, :3].cpu().numpy()
color_rgb = (batch["pc_cond"][0, :, 3:6] * 255).cpu().numpy().astype(np.uint8)
pc_rgb_trimesh = trimesh.PointCloud(vertices=xyz, colors=color_rgb)
# forward for the final mesh
trimesh_mesh, _glob_dict = model.generate_mesh(
batch, texture_resolution, remesh=remesh_option, vertex_count=vertex_count
)
trimesh_mesh = trimesh_mesh[0]
return trimesh_mesh, pc_rgb_trimesh
def run_model(
input_image,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count,
texture_resolution,
):
start = time.time()
with torch.no_grad():
with (
torch.autocast(device_type=device, dtype=torch.float16)
if "cuda" in device
else nullcontext()
):
model_batch = create_batch(input_image)
model_batch = {k: v.to(device) for k, v in model_batch.items()}
if pc_cond is not None:
# Check if pc_cond is a list
if isinstance(pc_cond, list):
cond_tensor = torch.tensor(pc_cond).float().cuda().view(-1, 6)
xyz = cond_tensor[:, :3]
color_rgb = cond_tensor[:, 3:]
elif isinstance(pc_cond, dict):
xyz = torch.tensor(pc_cond["positions"]).float().cuda()
color_rgb = torch.tensor(pc_cond["colors"]).float().cuda()
else:
xyz = torch.tensor(pc_cond.vertices).float().cuda()
color_rgb = (
torch.tensor(pc_cond.colors[:, :3]).float().cuda() / 255.0
)
model_batch["pc_cond"] = torch.cat([xyz, color_rgb], dim=-1).unsqueeze(
0
)
# sub-sample the point cloud to the target number of points
if model_batch["pc_cond"].shape[1] > 512:
idx = torch.randperm(model_batch["pc_cond"].shape[1])[:512]
model_batch["pc_cond"] = model_batch["pc_cond"][:, idx]
elif model_batch["pc_cond"].shape[1] < 512:
num_points = model_batch["pc_cond"].shape[1]
gr.Warning(
f"The uploaded point cloud should have at least 512 points. This point cloud only has {num_points}. Results may be worse."
)
pad = 512 - num_points
sampled_idx = torch.randint(
0, model_batch["pc_cond"].shape[1], (pad,)
)
model_batch["pc_cond"] = torch.cat(
[
model_batch["pc_cond"],
model_batch["pc_cond"][:, sampled_idx],
],
dim=1,
)
trimesh_mesh, trimesh_pc = forward_model(
model_batch,
model,
guidance_scale=guidance_scale,
seed=random_seed,
device="cuda",
remesh_option=remesh_option.lower(),
vertex_count=vertex_count,
texture_resolution=texture_resolution,
)
# Create new tmp file
temp_dir = tempfile.mkdtemp()
tmp_file = os.path.join(temp_dir, "mesh.glb")
trimesh_mesh.export(tmp_file, file_type="glb", include_normals=True)
generated_files.append(tmp_file)
tmp_file_pc = os.path.join(temp_dir, "points.ply")
trimesh_pc.export(tmp_file_pc)
generated_files.append(tmp_file_pc)
print("Generation took:", time.time() - start, "s")
return tmp_file, tmp_file_pc, trimesh_pc
def create_batch(input_image: Image) -> dict[str, Any]:
img_cond = (
torch.from_numpy(
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
/ 255.0
)
.float()
.clip(0, 1)
)
mask_cond = img_cond[:, :, -1:]
rgb_cond = torch.lerp(
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
)
batch_elem = {
"rgb_cond": rgb_cond,
"mask_cond": mask_cond,
"c2w_cond": c2w_cond.unsqueeze(0),
"intrinsic_cond": intrinsic.unsqueeze(0),
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
}
# Add batch dim
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
return batched
@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
base = np.zeros((squares, squares)) + min_value
base[1::2, ::2] = 1
base[::2, 1::2] = 1
repeat_mult = size // squares
return (
base.repeat(repeat_mult, axis=0)
.repeat(repeat_mult, axis=1)[:, :, None]
.repeat(3, axis=-1)
)
def remove_background(input_image: Image) -> Image:
return bg_remover.process(input_image.convert("RGB"))
def show_mask_img(input_image: Image) -> Image:
img_numpy = np.array(input_image)
alpha = img_numpy[:, :, 3] / 255.0
chkb = checkerboard(32, 512) * 255
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
def process_model_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
# Adjust vertex count based on selection
final_vertex_count = (
-1
if vertex_count_type == "Keep Vertex Count"
else (
vertex_count // 2
if vertex_count_type == "Target Face Count"
else vertex_count
)
)
print(
f"Final vertex count: {final_vertex_count} with type {vertex_count_type} and vertex count {vertex_count}"
)
glb_file, pc_file, pc_plot = run_model(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
final_vertex_count,
texture_resolution,
)
# Create a single float list of x y z r g b
point_list = []
for i in range(pc_plot.vertices.shape[0]):
point_list.extend(
[
pc_plot.vertices[i, 0],
pc_plot.vertices[i, 1],
pc_plot.vertices[i, 2],
pc_plot.colors[i, 0] / 255.0,
pc_plot.colors[i, 1] / 255.0,
pc_plot.colors[i, 2] / 255.0,
]
)
return glb_file, pc_file, point_list
def regenerate_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
glb_file, pc_file, point_list = process_model_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
)
return (
gr.update(), # run_btn
gr.update(), # img_proc_state
gr.update(), # background_remove_state
gr.update(), # preview_removal
gr.update(value=glb_file, visible=True), # output_3d
gr.update(visible=True), # hdr_row
gr.update(visible=True), # point_cloud_row
gr.update(value=point_list), # point_cloud_editor
gr.update(value=pc_file), # pc_download
gr.update(visible=False), # regenerate_btn
)
def run_button(
run_btn,
input_image,
background_state,
foreground_ratio,
no_crop,
guidance_scale,
random_seed,
pc_upload,
pc_cond_file,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
):
if run_btn == "Run":
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
if pc_upload:
# make sure the pc_cond_file has been uploaded
try:
pc_cond = trimesh.load(pc_cond_file.name)
except Exception:
raise gr.Error(
"Please upload a valid point cloud ply file as condition."
)
else:
pc_cond = None
glb_file, pc_file, pc_list = process_model_run(
background_state,
guidance_scale,
random_seed,
pc_cond,
remesh_option,
vertex_count_type,
vertex_count,
texture_resolution,
)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
return (
gr.update(), # run_btn
gr.update(), # img_proc_state
gr.update(), # background_remove_state
gr.update(), # preview_removal
gr.update(value=glb_file, visible=True), # output_3d
gr.update(visible=True), # hdr_row
gr.update(visible=True), # point_cloud_row
gr.update(value=pc_list), # point_cloud_editor
gr.update(value=pc_file), # pc_download
gr.update(visible=False), # regenerate_btn
)
elif run_btn == "Remove Background":
rem_removed = remove_background(input_image)
fr_res = spar3d_utils.foreground_crop(
rem_removed,
crop_ratio=foreground_ratio,
newsize=(COND_WIDTH, COND_HEIGHT),
no_crop=no_crop,
)
return (
gr.update(value="Run", visible=True), # run_btn
rem_removed, # img_proc_state,
fr_res, # background_remove_state
gr.update(value=show_mask_img(fr_res), visible=True), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
)
def requires_bg_remove(image, fr, no_crop):
if image is None:
return (
gr.update(visible=False, value="Run"), # run_Btn
None, # img_proc_state
None, # background_remove_state
gr.update(value=None, visible=False), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
)
alpha_channel = np.array(image.getchannel("A"))
min_alpha = alpha_channel.min()
if min_alpha == 0:
print("Already has alpha")
fr_res = spar3d_utils.foreground_crop(
image, fr, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=no_crop
)
return (
gr.update(value="Run", visible=True), # run_Btn
image, # img_proc_state
fr_res, # background_remove_state
gr.update(value=show_mask_img(fr_res), visible=True), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
)
return (
gr.update(value="Remove Background", visible=True), # run_Btn
None, # img_proc_state
None, # background_remove_state
gr.update(value=None, visible=False), # preview_removal
gr.update(value=None, visible=False), # output_3d
gr.update(visible=False), # hdr_row
gr.update(visible=False), # point_cloud_row
gr.update(value=None), # point_cloud_editor
gr.update(value=None), # pc_download
gr.update(visible=False), # regenerate_btn
)
def update_foreground_ratio(img_proc, fr, no_crop):
foreground_res = spar3d_utils.foreground_crop(
img_proc, fr, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=no_crop
)
return (
foreground_res,
gr.update(value=show_mask_img(foreground_res)),
)
def update_resolution_controls(remesh_choice, vertex_count_type):
show_controls = remesh_choice.lower() != "none"
show_vertex_count = vertex_count_type != "Keep Vertex Count"
return (
gr.update(visible=show_controls), # vertex_count_type
gr.update(visible=show_controls and show_vertex_count), # vertex_count_slider
)
with gr.Blocks() as demo:
img_proc_state = gr.State()
background_remove_state = gr.State()
gr.Markdown(
"""
# SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images
SPAR3D is a state-of-the-art method for 3D mesh reconstruction from a single image. This demo allows you to upload an image and generate a 3D mesh model from it. A feature of SPAR3D is it generates point clouds as intermediate representation before producing the mesh. You can edit the point cloud to adjust the final mesh. We provide a simple point cloud editor in this demo, where you can drag, recolor and rescale the point clouds. If you have more advanced editing needs (e.g. box selection, duplication, local streching, etc.), you can download the point cloud and edit it in softwares such as MeshLab or Blender. The edited point cloud can then be uploaded to this demo to generate a new 3D model by checking the "Point cloud upload" box.
**Tips**
1. If the image does not have a valid alpha channel, it will go through the background removal step. Our built-in background removal can be inaccurate sometimes, which will result in poor mesh quality. In such cases, you can use external background removal tools to obtain a RGBA image before uploading here.
2. You can adjust the foreground ratio to control the size of the foreground object. This may have major impact on the final mesh.
3. Guidance scale controls the strength of the image condition in the point cloud generation process. A higher value may result in higher mesh fidelity, but the variability by changing the random seed will be lower. Note that the guidance scale and the seed are not effective when the point cloud is manually uploaded.
4. Our online editor supports multi-selection by holding down the shift key. This allows you to recolor multiple points at once.
5. The editing should mainly alter the unseen parts of the object. Visible parts can be edited, but the edits should be consistent with the image. Editing the visible parts in a way that contradicts the image may result in poor mesh quality.
6. You can upload your own HDR environment map to light the 3D model.
"""
)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_img = gr.Image(
type="pil", label="Input Image", sources="upload", image_mode="RGBA"
)
preview_removal = gr.Image(
label="Preview Background Removal",
type="pil",
image_mode="RGB",
interactive=False,
visible=False,
)
gr.Markdown("### Input Controls")
with gr.Group():
with gr.Row():
no_crop = gr.Checkbox(label="No cropping", value=False)
pc_upload = gr.Checkbox(label="Point cloud upload", value=False)
pc_cond_file = gr.File(
label="Point Cloud Upload",
file_types=[".ply"],
file_count="single",
visible=False,
)
foreground_ratio = gr.Slider(
label="Padding Ratio",
minimum=1.0,
maximum=2.0,
value=1.3,
step=0.05,
)
pc_upload.change(
lambda x: gr.update(visible=x),
inputs=pc_upload,
outputs=[pc_cond_file],
)
no_crop.change(
update_foreground_ratio,
inputs=[img_proc_state, foreground_ratio, no_crop],
outputs=[background_remove_state, preview_removal],
)
foreground_ratio.change(
update_foreground_ratio,
inputs=[img_proc_state, foreground_ratio, no_crop],
outputs=[background_remove_state, preview_removal],
)
gr.Markdown("### Point Diffusion Controls")
with gr.Group():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1.0,
maximum=10.0,
value=3.0,
step=1.0,
)
random_seed = gr.Slider(
label="Seed",
minimum=0,
maximum=10000,
value=0,
step=1,
)
no_remesh = not TRIANGLE_REMESH_AVAILABLE and not QUAD_REMESH_AVAILABLE
gr.Markdown(
"### Texture Controls"
if no_remesh
else "### Meshing and Texture Controls"
)
with gr.Group():
remesh_choices = ["None"]
if TRIANGLE_REMESH_AVAILABLE:
remesh_choices.append("Triangle")
if QUAD_REMESH_AVAILABLE:
remesh_choices.append("Quad")
remesh_option = gr.Radio(
choices=remesh_choices,
label="Remeshing",
value="None",
visible=not no_remesh,
)
vertex_count_type = gr.Radio(
choices=[
"Keep Vertex Count",
"Target Vertex Count",
"Target Face Count",
],
label="Mesh Resolution Control",
value="Keep Vertex Count",
visible=False,
)
vertex_count_slider = gr.Slider(
label="Target Count",
minimum=0,
maximum=20000,
value=2000,
visible=False,
)
texture_size = gr.Slider(
label="Texture Size",
minimum=512,
maximum=2048,
value=1024,
step=256,
visible=True,
)
remesh_option.change(
update_resolution_controls,
inputs=[remesh_option, vertex_count_type],
outputs=[vertex_count_type, vertex_count_slider],
)
vertex_count_type.change(
update_resolution_controls,
inputs=[remesh_option, vertex_count_type],
outputs=[vertex_count_type, vertex_count_slider],
)
run_btn = gr.Button("Run", variant="primary", visible=False)
with gr.Column():
with gr.Group(visible=False) as point_cloud_row:
point_size_slider = gr.Slider(
label="Point Size",
minimum=0.01,
maximum=1.0,
value=0.2,
step=0.01,
)
point_cloud_editor = PointCloudEditor(
up_axis="Z",
forward_axis="X",
lock_scale_z=True,
lock_scale_y=True,
visible=True,
)
pc_download = gr.File(
label="Point Cloud Download",
file_types=[".ply"],
file_count="single",
)
point_size_slider.change(
fn=lambda x: gr.update(point_size=x),
inputs=point_size_slider,
outputs=point_cloud_editor,
)
regenerate_btn = gr.Button(
"Re-run with point cloud", variant="primary", visible=False
)
output_3d = LitModel3D(
label="3D Model",
visible=False,
clear_color=[0.0, 0.0, 0.0, 0.0],
tonemapping="aces",
contrast=1.0,
scale=1.0,
)
with gr.Column(visible=False, scale=1.0) as hdr_row:
gr.Markdown(
"""## HDR Environment Map
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
"""
)
with gr.Row():
hdr_illumination_file = gr.File(
label="HDR Env Map",
file_types=[".hdr"],
file_count="single",
)
example_hdris = [
os.path.join("demo_files/hdri", f)
for f in os.listdir("demo_files/hdri")
]
hdr_illumination_example = gr.Examples(
examples=example_hdris,
inputs=hdr_illumination_file,
)
hdr_illumination_file.change(
lambda x: gr.update(env_map=x.name if x is not None else None),
inputs=hdr_illumination_file,
outputs=[output_3d],
)
examples = gr.Examples(
examples=example_files, inputs=input_img, examples_per_page=11
)
input_img.change(
requires_bg_remove,
inputs=[input_img, foreground_ratio, no_crop],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
point_cloud_row,
point_cloud_editor,
pc_download,
regenerate_btn,
],
)
point_cloud_editor.edit(
fn=lambda _x: gr.update(visible=True),
inputs=point_cloud_editor,
outputs=regenerate_btn,
)
regenerate_btn.click(
regenerate_run,
inputs=[
background_remove_state,
guidance_scale,
random_seed,
point_cloud_editor,
remesh_option,
vertex_count_type,
vertex_count_slider,
texture_size,
],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
point_cloud_row,
point_cloud_editor,
pc_download,
regenerate_btn,
],
)
run_btn.click(
run_button,
inputs=[
run_btn,
input_img,
background_remove_state,
foreground_ratio,
no_crop,
guidance_scale,
random_seed,
pc_upload,
pc_cond_file,
remesh_option,
vertex_count_type,
vertex_count_slider,
texture_size,
],
outputs=[
run_btn,
img_proc_state,
background_remove_state,
preview_removal,
output_3d,
hdr_row,
point_cloud_row,
point_cloud_editor,
pc_download,
regenerate_btn,
],
)
demo.queue().launch()
|