File size: 10,340 Bytes
38dbec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
from __future__ import annotations
import math
from typing import Any, Dict, Optional
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
from jaxtyping import Float, Integer
from torch import Tensor
from spar3d.models.utils import dot
try:
from uv_unwrapper import Unwrapper
except ImportError:
import logging
logging.warning(
"Could not import uv_unwrapper. Please install it via `pip install uv_unwrapper/`"
)
# Exit early to avoid further errors
raise ImportError("uv_unwrapper not found")
try:
import gpytoolbox
TRIANGLE_REMESH_AVAILABLE = True
except ImportError:
TRIANGLE_REMESH_AVAILABLE = False
import logging
logging.warning(
"Could not import gpytoolbox. Triangle remeshing functionality will be disabled. "
"Install via `pip install gpytoolbox`"
)
try:
import pynim
QUAD_REMESH_AVAILABLE = True
except ImportError:
QUAD_REMESH_AVAILABLE = False
import logging
logging.warning(
"Could not import pynim. Quad remeshing functionality will be disabled. "
"Install via `pip install git+https://github.com/vork/[email protected]`"
)
class Mesh:
def __init__(
self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], **kwargs
) -> None:
self.v_pos: Float[Tensor, "Nv 3"] = v_pos
self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx
self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None
self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None
self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None
self._edges: Optional[Integer[Tensor, "Ne 2"]] = None
self.extras: Dict[str, Any] = {}
for k, v in kwargs.items():
self.add_extra(k, v)
self.unwrapper = Unwrapper()
def add_extra(self, k, v) -> None:
self.extras[k] = v
@property
def requires_grad(self):
return self.v_pos.requires_grad
@property
def v_nrm(self):
if self._v_nrm is None:
self._v_nrm = self._compute_vertex_normal()
return self._v_nrm
@property
def v_tng(self):
if self._v_tng is None:
self._v_tng = self._compute_vertex_tangent()
return self._v_tng
@property
def v_tex(self):
if self._v_tex is None:
self.unwrap_uv()
return self._v_tex
@property
def edges(self):
if self._edges is None:
self._edges = self._compute_edges()
return self._edges
def _compute_vertex_normal(self):
i0 = self.t_pos_idx[:, 0]
i1 = self.t_pos_idx[:, 1]
i2 = self.t_pos_idx[:, 2]
v0 = self.v_pos[i0, :]
v1 = self.v_pos[i1, :]
v2 = self.v_pos[i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
# Splat face normals to vertices
v_nrm = torch.zeros_like(self.v_pos)
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)
# Normalize, replace zero (degenerated) normals with some default value
v_nrm = torch.where(
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
)
v_nrm = F.normalize(v_nrm, dim=1)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_nrm))
return v_nrm
def _compute_vertex_tangent(self):
vn_idx = [None] * 3
pos = [None] * 3
tex = [None] * 3
for i in range(0, 3):
pos[i] = self.v_pos[self.t_pos_idx[:, i]]
tex[i] = self.v_tex[self.t_pos_idx[:, i]]
# t_nrm_idx is always the same as t_pos_idx
vn_idx[i] = self.t_pos_idx[:, i]
tangents = torch.zeros_like(self.v_nrm)
tansum = torch.zeros_like(self.v_nrm)
# Compute tangent space for each triangle
duv1 = tex[1] - tex[0]
duv2 = tex[2] - tex[0]
dpos1 = pos[1] - pos[0]
dpos2 = pos[2] - pos[0]
tng_nom = dpos1 * duv2[..., 1:2] - dpos2 * duv1[..., 1:2]
denom = duv1[..., 0:1] * duv2[..., 1:2] - duv1[..., 1:2] * duv2[..., 0:1]
# Avoid division by zero for degenerated texture coordinates
denom_safe = denom.clip(1e-6)
tang = tng_nom / denom_safe
# Update all 3 vertices
for i in range(0, 3):
idx = vn_idx[i][:, None].repeat(1, 3)
tangents.scatter_add_(0, idx, tang) # tangents[n_i] = tangents[n_i] + tang
tansum.scatter_add_(
0, idx, torch.ones_like(tang)
) # tansum[n_i] = tansum[n_i] + 1
# Also normalize it. Here we do not normalize the individual triangles first so larger area
# triangles influence the tangent space more
tangents = tangents / tansum
# Normalize and make sure tangent is perpendicular to normal
tangents = F.normalize(tangents, dim=1)
tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(tangents))
return tangents
def quad_remesh(
self,
quad_vertex_count: int = -1,
quad_rosy: int = 4,
quad_crease_angle: float = -1.0,
quad_smooth_iter: int = 2,
quad_align_to_boundaries: bool = False,
) -> Mesh:
if not QUAD_REMESH_AVAILABLE:
raise ImportError("Quad remeshing requires pynim to be installed")
if quad_vertex_count < 0:
quad_vertex_count = self.v_pos.shape[0]
v_pos = self.v_pos.detach().cpu().numpy().astype(np.float32)
t_pos_idx = self.t_pos_idx.detach().cpu().numpy().astype(np.uint32)
new_vert, new_faces = pynim.remesh(
v_pos,
t_pos_idx,
quad_vertex_count // 4,
rosy=quad_rosy,
posy=4,
creaseAngle=quad_crease_angle,
align_to_boundaries=quad_align_to_boundaries,
smooth_iter=quad_smooth_iter,
deterministic=False,
)
# Briefly load in trimesh
mesh = trimesh.Trimesh(vertices=new_vert, faces=new_faces.astype(np.int32))
v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos).contiguous()
t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx).contiguous()
# Create new mesh
return Mesh(v_pos, t_pos_idx)
def triangle_remesh(
self,
triangle_average_edge_length_multiplier: Optional[float] = None,
triangle_remesh_steps: int = 10,
triangle_vertex_count=-1,
):
if not TRIANGLE_REMESH_AVAILABLE:
raise ImportError("Triangle remeshing requires gpytoolbox to be installed")
if triangle_vertex_count > 0:
reduction = triangle_vertex_count / self.v_pos.shape[0]
print("Triangle reduction:", reduction)
v_pos = self.v_pos.detach().cpu().numpy().astype(np.float32)
t_pos_idx = self.t_pos_idx.detach().cpu().numpy().astype(np.int32)
if reduction > 1.0:
subdivide_iters = int(math.ceil(math.log(reduction) / math.log(2)))
print("Subdivide iters:", subdivide_iters)
v_pos, t_pos_idx = gpytoolbox.subdivide(
v_pos,
t_pos_idx,
iters=subdivide_iters,
)
reduction = triangle_vertex_count / v_pos.shape[0]
# Simplify
points_out, faces_out, _, _ = gpytoolbox.decimate(
v_pos,
t_pos_idx,
face_ratio=reduction,
)
# Convert back to torch
self.v_pos = torch.from_numpy(points_out).to(self.v_pos)
self.t_pos_idx = torch.from_numpy(faces_out).to(self.t_pos_idx)
self._edges = None
triangle_average_edge_length_multiplier = None
edges = self.edges
if triangle_average_edge_length_multiplier is None:
h = None
else:
h = float(
torch.linalg.norm(
self.v_pos[edges[:, 0]] - self.v_pos[edges[:, 1]], dim=1
)
.mean()
.item()
* triangle_average_edge_length_multiplier
)
# Convert to numpy
v_pos = self.v_pos.detach().cpu().numpy().astype(np.float64)
t_pos_idx = self.t_pos_idx.detach().cpu().numpy().astype(np.int32)
# Remesh
v_remesh, f_remesh = gpytoolbox.remesh_botsch(
v_pos,
t_pos_idx,
triangle_remesh_steps,
h,
)
# Convert back to torch
v_pos = torch.from_numpy(v_remesh).to(self.v_pos).contiguous()
t_pos_idx = torch.from_numpy(f_remesh).to(self.t_pos_idx).contiguous()
# Create new mesh
return Mesh(v_pos, t_pos_idx)
@torch.no_grad()
def unwrap_uv(
self,
island_padding: float = 0.02,
) -> Mesh:
uv, indices = self.unwrapper(
self.v_pos, self.v_nrm, self.t_pos_idx, island_padding
)
# Do store per vertex UVs.
# This means we need to duplicate some vertices at the seams
individual_vertices = self.v_pos[self.t_pos_idx].reshape(-1, 3)
individual_faces = torch.arange(
individual_vertices.shape[0],
device=individual_vertices.device,
dtype=self.t_pos_idx.dtype,
).reshape(-1, 3)
uv_flat = uv[indices].reshape((-1, 2))
# uv_flat[:, 1] = 1 - uv_flat[:, 1]
self.v_pos = individual_vertices
self.t_pos_idx = individual_faces
self._v_tex = uv_flat
self._v_nrm = self._compute_vertex_normal()
self._v_tng = self._compute_vertex_tangent()
def _compute_edges(self):
# Compute edges
edges = torch.cat(
[
self.t_pos_idx[:, [0, 1]],
self.t_pos_idx[:, [1, 2]],
self.t_pos_idx[:, [2, 0]],
],
dim=0,
)
edges = edges.sort()[0]
edges = torch.unique(edges, dim=0)
return edges
|