File size: 30,551 Bytes
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
a399d55
c2f384d
a399d55
e2ccc8a
 
 
38dbec8
e2ccc8a
38dbec8
e2ccc8a
38dbec8
e2ccc8a
 
 
 
 
38dbec8
e2ccc8a
 
 
 
 
38dbec8
e2ccc8a
38dbec8
e2ccc8a
 
 
 
38dbec8
e2ccc8a
38dbec8
e2ccc8a
38dbec8
e2ccc8a
 
 
 
 
 
 
38dbec8
e2ccc8a
 
 
38dbec8
 
64fccd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
 
 
 
 
38dbec8
 
64fccd8
38dbec8
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
4d8c3d6
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
 
 
 
38dbec8
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
64fccd8
 
38dbec8
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
64fccd8
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
64fccd8
 
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38dbec8
64fccd8
 
 
38dbec8
 
64fccd8
 
 
 
 
 
 
 
 
 
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fccd8
38dbec8
 
 
 
64fccd8
38dbec8
 
 
64fccd8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
import os
import random
import tempfile
import time
import zipfile
from contextlib import nullcontext
from functools import lru_cache
from typing import Any

import cv2
import gradio as gr
import numpy as np
import torch
import trimesh
from gradio_litmodel3d import LitModel3D
from gradio_pointcloudeditor import PointCloudEditor
from PIL import Image
from transparent_background import Remover

os.system("USE_CUDA=1 pip install -vv --no-build-isolation ./texture_baker ./uv_unwrapper")
os.system("pip install ./deps/pynim-0.0.3-cp310-cp310-linux_x86_64.whl")

import spar3d.utils as spar3d_utils
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D

os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")

bg_remover = Remover()  # default setting

COND_WIDTH = 512
COND_HEIGHT = 512
COND_DISTANCE = 2.2
COND_FOVY = 0.591627
BACKGROUND_COLOR = [0.5, 0.5, 0.5]

# Cached. Doesn't change
c2w_cond = spar3d_utils.default_cond_c2w(COND_DISTANCE)
intrinsic, intrinsic_normed_cond = spar3d_utils.create_intrinsic_from_fov_rad(
    COND_FOVY, COND_HEIGHT, COND_WIDTH
)

generated_files = []

# Delete previous gradio temp dir folder
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
    print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
    import shutil

    shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])

device = spar3d_utils.get_device()

model = SPAR3D.from_pretrained(
    "stabilityai/stable-point-aware-3d",
    config_name="config.yaml",
    weight_name="model.safetensors",
)
model.eval()
model = model.to(device)

example_files = [
    os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
]


def create_zip_file(glb_file, pc_file, illumination_file):
    if not all([glb_file, pc_file, illumination_file]):
        return None

    # Create a temporary zip file
    temp_dir = tempfile.mkdtemp()
    zip_path = os.path.join(temp_dir, "spar3d_output.zip")

    with zipfile.ZipFile(zip_path, "w") as zipf:
        zipf.write(glb_file, "mesh.glb")
        zipf.write(pc_file, "points.ply")
        zipf.write(illumination_file, "illumination.hdr")

    generated_files.append(zip_path)
    return zip_path


def forward_model(
    batch,
    system,
    guidance_scale=3.0,
    seed=0,
    device="cuda",
    remesh_option="none",
    vertex_count=-1,
    texture_resolution=1024,
):
    batch_size = batch["rgb_cond"].shape[0]

    # prepare the condition for point cloud generation
    # set seed
    random.seed(seed)
    torch.manual_seed(seed)
    np.random.seed(seed)
    cond_tokens = system.forward_pdiff_cond(batch)

    if "pc_cond" not in batch:
        sample_iter = system.sampler.sample_batch_progressive(
            batch_size,
            cond_tokens,
            guidance_scale=guidance_scale,
            device=device,
        )
        for x in sample_iter:
            samples = x["xstart"]
        batch["pc_cond"] = samples.permute(0, 2, 1).float()
        batch["pc_cond"] = spar3d_utils.normalize_pc_bbox(batch["pc_cond"])

    # subsample to the 512 points
    batch["pc_cond"] = batch["pc_cond"][
        :, torch.randperm(batch["pc_cond"].shape[1])[:512]
    ]

    # get the point cloud
    xyz = batch["pc_cond"][0, :, :3].cpu().numpy()
    color_rgb = (batch["pc_cond"][0, :, 3:6] * 255).cpu().numpy().astype(np.uint8)
    pc_rgb_trimesh = trimesh.PointCloud(vertices=xyz, colors=color_rgb)

    # forward for the final mesh
    trimesh_mesh, _glob_dict = model.generate_mesh(
        batch,
        texture_resolution,
        remesh=remesh_option,
        vertex_count=vertex_count,
        estimate_illumination=True,
    )
    trimesh_mesh = trimesh_mesh[0]
    illumination = _glob_dict["illumination"]

    return trimesh_mesh, pc_rgb_trimesh, illumination.cpu().detach().numpy()[0]


def run_model(
    input_image,
    guidance_scale,
    random_seed,
    pc_cond,
    remesh_option,
    vertex_count,
    texture_resolution,
):
    start = time.time()
    with torch.no_grad():
        with (
            torch.autocast(device_type=device, dtype=torch.bfloat16)
            if "cuda" in device
            else nullcontext()
        ):
            model_batch = create_batch(input_image)
            model_batch = {k: v.to(device) for k, v in model_batch.items()}

            if pc_cond is not None:
                # Check if pc_cond is a list
                if isinstance(pc_cond, list):
                    cond_tensor = torch.tensor(pc_cond).float().cuda().view(-1, 6)
                    xyz = cond_tensor[:, :3]
                    color_rgb = cond_tensor[:, 3:]
                elif isinstance(pc_cond, dict):
                    xyz = torch.tensor(pc_cond["positions"]).float().cuda()
                    color_rgb = torch.tensor(pc_cond["colors"]).float().cuda()
                else:
                    xyz = torch.tensor(pc_cond.vertices).float().cuda()
                    color_rgb = (
                        torch.tensor(pc_cond.colors[:, :3]).float().cuda() / 255.0
                    )
                model_batch["pc_cond"] = torch.cat([xyz, color_rgb], dim=-1).unsqueeze(
                    0
                )
                # sub-sample the point cloud to the target number of points
                if model_batch["pc_cond"].shape[1] > 512:
                    idx = torch.randperm(model_batch["pc_cond"].shape[1])[:512]
                    model_batch["pc_cond"] = model_batch["pc_cond"][:, idx]
                elif model_batch["pc_cond"].shape[1] < 512:
                    num_points = model_batch["pc_cond"].shape[1]
                    gr.Warning(
                        f"The uploaded point cloud should have at least 512 points. This point cloud only has {num_points}. Results may be worse."
                    )
                    pad = 512 - num_points
                    sampled_idx = torch.randint(
                        0, model_batch["pc_cond"].shape[1], (pad,)
                    )
                    model_batch["pc_cond"] = torch.cat(
                        [
                            model_batch["pc_cond"],
                            model_batch["pc_cond"][:, sampled_idx],
                        ],
                        dim=1,
                    )

            trimesh_mesh, trimesh_pc, illumination_map = forward_model(
                model_batch,
                model,
                guidance_scale=guidance_scale,
                seed=random_seed,
                device="cuda",
                remesh_option=remesh_option.lower(),
                vertex_count=vertex_count,
                texture_resolution=texture_resolution,
            )

    # Create new tmp file
    temp_dir = tempfile.mkdtemp()
    tmp_file = os.path.join(temp_dir, "mesh.glb")

    trimesh_mesh.export(tmp_file, file_type="glb", include_normals=True)
    generated_files.append(tmp_file)

    tmp_file_pc = os.path.join(temp_dir, "points.ply")
    trimesh_pc.export(tmp_file_pc)
    generated_files.append(tmp_file_pc)

    tmp_file_illumination = os.path.join(temp_dir, "illumination.hdr")
    cv2.imwrite(tmp_file_illumination, illumination_map)
    generated_files.append(tmp_file_illumination)

    print("Generation took:", time.time() - start, "s")

    return tmp_file, tmp_file_pc, tmp_file_illumination, trimesh_pc


def create_batch(input_image: Image) -> dict[str, Any]:
    img_cond = (
        torch.from_numpy(
            np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
            / 255.0
        )
        .float()
        .clip(0, 1)
    )
    mask_cond = img_cond[:, :, -1:]
    rgb_cond = torch.lerp(
        torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
    )

    batch_elem = {
        "rgb_cond": rgb_cond,
        "mask_cond": mask_cond,
        "c2w_cond": c2w_cond.unsqueeze(0),
        "intrinsic_cond": intrinsic.unsqueeze(0),
        "intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
    }
    # Add batch dim
    batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
    return batched


@lru_cache
def checkerboard(squares: int, size: int, min_value: float = 0.5):
    base = np.zeros((squares, squares)) + min_value
    base[1::2, ::2] = 1
    base[::2, 1::2] = 1

    repeat_mult = size // squares
    return (
        base.repeat(repeat_mult, axis=0)
        .repeat(repeat_mult, axis=1)[:, :, None]
        .repeat(3, axis=-1)
    )


def remove_background(input_image: Image) -> Image:
    return bg_remover.process(input_image.convert("RGB"))


def show_mask_img(input_image: Image) -> Image:
    img_numpy = np.array(input_image)
    alpha = img_numpy[:, :, 3] / 255.0
    chkb = checkerboard(32, 512) * 255
    new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
    return Image.fromarray(new_img.astype(np.uint8), mode="RGB")


def process_model_run(
    background_state,
    guidance_scale,
    random_seed,
    pc_cond,
    remesh_option,
    vertex_count_type,
    vertex_count,
    texture_resolution,
):
    # Adjust vertex count based on selection
    final_vertex_count = (
        -1
        if vertex_count_type == "Keep Vertex Count"
        else (
            vertex_count // 2
            if vertex_count_type == "Target Face Count"
            else vertex_count
        )
    )
    print(
        f"Final vertex count: {final_vertex_count} with type {vertex_count_type} and vertex count {vertex_count}"
    )

    glb_file, pc_file, illumination_file, pc_plot = run_model(
        background_state,
        guidance_scale,
        random_seed,
        pc_cond,
        remesh_option,
        final_vertex_count,
        texture_resolution,
    )
    # Create a single float list of x y z r g b
    point_list = []
    for i in range(pc_plot.vertices.shape[0]):
        point_list.extend(
            [
                pc_plot.vertices[i, 0],
                pc_plot.vertices[i, 1],
                pc_plot.vertices[i, 2],
                pc_plot.colors[i, 0] / 255.0,
                pc_plot.colors[i, 1] / 255.0,
                pc_plot.colors[i, 2] / 255.0,
            ]
        )

    return glb_file, pc_file, illumination_file, point_list


def regenerate_run(
    background_state,
    guidance_scale,
    random_seed,
    pc_cond,
    remesh_option,
    vertex_count_type,
    vertex_count,
    texture_resolution,
):
    glb_file, pc_file, illumination_file, point_list = process_model_run(
        background_state,
        guidance_scale,
        random_seed,
        pc_cond,
        remesh_option,
        vertex_count_type,
        vertex_count,
        texture_resolution,
    )
    zip_file = create_zip_file(glb_file, pc_file, illumination_file)

    return (
        gr.update(),  # run_btn
        gr.update(),  # img_proc_state
        gr.update(),  # background_remove_state
        gr.update(),  # preview_removal
        gr.update(value=glb_file, visible=True),  # output_3d
        gr.update(visible=True),  # hdr_row
        illumination_file,  # hdr_file
        gr.update(visible=True),  # point_cloud_row
        gr.update(value=point_list),  # point_cloud_editor
        gr.update(value=pc_file),  # pc_download
        gr.update(visible=False),  # regenerate_btn
        gr.update(value=zip_file, visible=True),  # download_all_btn
    )


def run_button(
    run_btn,
    input_image,
    background_state,
    foreground_ratio,
    no_crop,
    guidance_scale,
    random_seed,
    pc_upload,
    pc_cond_file,
    remesh_option,
    vertex_count_type,
    vertex_count,
    texture_resolution,
):
    if run_btn == "Run":
        if torch.cuda.is_available():
            torch.cuda.reset_peak_memory_stats()

        if pc_upload:
            # make sure the pc_cond_file has been uploaded
            try:
                pc_cond = trimesh.load(pc_cond_file.name)
            except Exception:
                raise gr.Error(
                    "Please upload a valid point cloud ply file as condition."
                )
        else:
            pc_cond = None

        glb_file, pc_file, illumination_file, pc_list = process_model_run(
            background_state,
            guidance_scale,
            random_seed,
            pc_cond,
            remesh_option,
            vertex_count_type,
            vertex_count,
            texture_resolution,
        )

        zip_file = create_zip_file(glb_file, pc_file, illumination_file)

        if torch.cuda.is_available():
            print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
        elif torch.backends.mps.is_available():
            print(
                "Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
            )

        return (
            gr.update(),  # run_btn
            gr.update(),  # img_proc_state
            gr.update(),  # background_remove_state
            gr.update(),  # preview_removal
            gr.update(value=glb_file, visible=True),  # output_3d
            gr.update(visible=True),  # hdr_row
            illumination_file,  # hdr_file
            gr.update(visible=True),  # point_cloud_row
            gr.update(value=pc_list),  # point_cloud_editor
            gr.update(value=pc_file),  # pc_download
            gr.update(visible=False),  # regenerate_btn
            gr.update(value=zip_file, visible=True),  # download_all_btn
        )

    elif run_btn == "Remove Background":
        rem_removed = remove_background(input_image)

        fr_res = spar3d_utils.foreground_crop(
            rem_removed,
            crop_ratio=foreground_ratio,
            newsize=(COND_WIDTH, COND_HEIGHT),
            no_crop=no_crop,
        )

        return (
            gr.update(value="Run", visible=True),  # run_btn
            rem_removed,  # img_proc_state,
            fr_res,  # background_remove_state
            gr.update(value=show_mask_img(fr_res), visible=True),  # preview_removal
            gr.update(value=None, visible=False),  # output_3d
            gr.update(visible=False),  # hdr_row
            None,  # hdr_file
            gr.update(visible=False),  # point_cloud_row
            gr.update(value=None),  # point_cloud_editor
            gr.update(value=None),  # pc_download
            gr.update(visible=False),  # regenerate_btn
            gr.update(value=None, visible=False),  # download_all_btn
        )


def requires_bg_remove(image, fr, no_crop):
    if image is None:
        return (
            gr.update(visible=False, value="Run"),  # run_Btn
            None,  # img_proc_state
            None,  # background_remove_state
            gr.update(value=None, visible=False),  # preview_removal
            gr.update(value=None, visible=False),  # output_3d
            gr.update(value=None, visible=False),  # hdr_row
            None,  # hdr_file
            gr.update(visible=False),  # point_cloud_row
            gr.update(value=None),  # point_cloud_editor
            gr.update(value=None),  # pc_download
            gr.update(visible=False),  # regenerate_btn
            gr.update(value=None, visible=False),  # download_all_btn
        )
    alpha_channel = np.array(image.getchannel("A"))
    min_alpha = alpha_channel.min()

    if min_alpha == 0:
        print("Already has alpha")
        fr_res = spar3d_utils.foreground_crop(
            image, fr, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=no_crop
        )
        return (
            gr.update(value="Run", visible=True),  # run_Btn
            image,  # img_proc_state
            fr_res,  # background_remove_state
            gr.update(value=show_mask_img(fr_res), visible=True),  # preview_removal
            gr.update(value=None, visible=False),  # output_3d
            gr.update(visible=False),  # hdr_row
            None,  # hdr_file
            gr.update(visible=False),  # point_cloud_row
            gr.update(value=None),  # point_cloud_editor
            gr.update(value=None),  # pc_download
            gr.update(visible=False),  # regenerate_btn
            gr.update(value=None, visible=False),  # download_all_btn
        )
    return (
        gr.update(value="Remove Background", visible=True),  # run_Btn
        None,  # img_proc_state
        None,  # background_remove_state
        gr.update(value=None, visible=False),  # preview_removal
        gr.update(value=None, visible=False),  # output_3d
        gr.update(visible=False),  # hdr_row
        None,  # hdr_file
        gr.update(visible=False),  # point_cloud_row
        gr.update(value=None),  # point_cloud_editor
        gr.update(value=None),  # pc_download
        gr.update(visible=False),  # regenerate_btn
        gr.update(value=None, visible=False),  # download_all_btn
    )


def update_foreground_ratio(img_proc, fr, no_crop):
    foreground_res = spar3d_utils.foreground_crop(
        img_proc, fr, newsize=(COND_WIDTH, COND_HEIGHT), no_crop=no_crop
    )
    return (
        foreground_res,
        gr.update(value=show_mask_img(foreground_res)),
    )


def update_resolution_controls(remesh_choice, vertex_count_type):
    show_controls = remesh_choice.lower() != "none"
    show_vertex_count = vertex_count_type != "Keep Vertex Count"
    return (
        gr.update(visible=show_controls),  # vertex_count_type
        gr.update(visible=show_controls and show_vertex_count),  # vertex_count_slider
    )


with gr.Blocks() as demo:
    img_proc_state = gr.State()
    background_remove_state = gr.State()
    hdr_illumination_file_state = gr.State()
    gr.Markdown(
        """
    # SPAR3D: Stable Point-Aware Reconstruction of 3D Objects from Single Images

    SPAR3D is a state-of-the-art method for 3D mesh reconstruction from a single image. This demo allows you to upload an image and generate a 3D mesh model from it. A feature of SPAR3D is it generates point clouds as intermediate representation before producing the mesh. You can edit the point cloud to adjust the final mesh. We provide a simple point cloud editor in this demo, where you can drag, recolor and rescale the point clouds. If you have more advanced editing needs (e.g. box selection, duplication, local streching, etc.), you can download the point cloud and edit it in softwares such as MeshLab or Blender. The edited point cloud can then be uploaded to this demo to generate a new 3D model by checking the "Point cloud upload" box.

    **Tips**

    1. If the image does not have a valid alpha channel, it will go through the background removal step. Our built-in background removal can be inaccurate sometimes, which will result in poor mesh quality. In such cases, you can use external background removal tools to obtain a RGBA image before uploading here.
    2. You can adjust the foreground ratio to control the size of the foreground object. This may have major impact on the final mesh.
    3. Guidance scale controls the strength of the image condition in the point cloud generation process. A higher value may result in higher mesh fidelity, but the variability by changing the random seed will be lower. Note that the guidance scale and the seed are not effective when the point cloud is manually uploaded.
    4. Our online editor supports multi-selection by holding down the shift key. This allows you to recolor multiple points at once.
    5. The editing should mainly alter the unseen parts of the object. Visible parts can be edited, but the edits should be consistent with the image. Editing the visible parts in a way that contradicts the image may result in poor mesh quality.
    6. You can upload your own HDR environment map to light the 3D model.
    """
    )
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_img = gr.Image(
                    type="pil", label="Input Image", sources="upload", image_mode="RGBA"
                )
                preview_removal = gr.Image(
                    label="Preview Background Removal",
                    type="pil",
                    image_mode="RGB",
                    interactive=False,
                    visible=False,
                )

            gr.Markdown("### Input Controls")
            with gr.Group():
                with gr.Row():
                    no_crop = gr.Checkbox(label="No cropping", value=False)
                    pc_upload = gr.Checkbox(label="Point cloud upload", value=False)

                pc_cond_file = gr.File(
                    label="Point Cloud Upload",
                    file_types=[".ply"],
                    file_count="single",
                    visible=False,
                )

                foreground_ratio = gr.Slider(
                    label="Padding Ratio",
                    minimum=1.0,
                    maximum=2.0,
                    value=1.3,
                    step=0.05,
                )

            pc_upload.change(
                lambda x: gr.update(visible=x),
                inputs=pc_upload,
                outputs=[pc_cond_file],
            )

            no_crop.change(
                update_foreground_ratio,
                inputs=[img_proc_state, foreground_ratio, no_crop],
                outputs=[background_remove_state, preview_removal],
            )

            foreground_ratio.change(
                update_foreground_ratio,
                inputs=[img_proc_state, foreground_ratio, no_crop],
                outputs=[background_remove_state, preview_removal],
            )

            gr.Markdown("### Point Diffusion Controls")
            with gr.Group():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1.0,
                    maximum=10.0,
                    value=3.0,
                    step=1.0,
                )

                random_seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=10000,
                    value=0,
                    step=1,
                )

            no_remesh = not TRIANGLE_REMESH_AVAILABLE and not QUAD_REMESH_AVAILABLE
            gr.Markdown(
                "### Texture Controls"
                if no_remesh
                else "### Meshing and Texture Controls"
            )
            with gr.Group():
                remesh_choices = ["None"]
                if TRIANGLE_REMESH_AVAILABLE:
                    remesh_choices.append("Triangle")
                if QUAD_REMESH_AVAILABLE:
                    remesh_choices.append("Quad")

                remesh_option = gr.Radio(
                    choices=remesh_choices,
                    label="Remeshing",
                    value="None",
                    visible=not no_remesh,
                )

                vertex_count_type = gr.Radio(
                    choices=[
                        "Keep Vertex Count",
                        "Target Vertex Count",
                        "Target Face Count",
                    ],
                    label="Mesh Resolution Control",
                    value="Keep Vertex Count",
                    visible=False,
                )

                vertex_count_slider = gr.Slider(
                    label="Target Count",
                    minimum=0,
                    maximum=20000,
                    value=2000,
                    visible=False,
                )

                texture_size = gr.Slider(
                    label="Texture Size",
                    minimum=512,
                    maximum=2048,
                    value=1024,
                    step=256,
                    visible=True,
                )

            remesh_option.change(
                update_resolution_controls,
                inputs=[remesh_option, vertex_count_type],
                outputs=[vertex_count_type, vertex_count_slider],
            )

            vertex_count_type.change(
                update_resolution_controls,
                inputs=[remesh_option, vertex_count_type],
                outputs=[vertex_count_type, vertex_count_slider],
            )

            run_btn = gr.Button("Run", variant="primary", visible=False)

        with gr.Column():
            with gr.Group(visible=False) as point_cloud_row:
                point_size_slider = gr.Slider(
                    label="Point Size",
                    minimum=0.01,
                    maximum=1.0,
                    value=0.2,
                    step=0.01,
                )
                point_cloud_editor = PointCloudEditor(
                    up_axis="Z",
                    forward_axis="X",
                    lock_scale_z=True,
                    lock_scale_y=True,
                    visible=True,
                )

                pc_download = gr.File(
                    label="Point Cloud Download",
                    file_types=[".ply"],
                    file_count="single",
                )
            point_size_slider.change(
                fn=lambda x: gr.update(point_size=x),
                inputs=point_size_slider,
                outputs=point_cloud_editor,
            )

            regenerate_btn = gr.Button(
                "Re-run with point cloud", variant="primary", visible=False
            )

            output_3d = LitModel3D(
                label="3D Model",
                visible=False,
                clear_color=[0.0, 0.0, 0.0, 0.0],
                tonemapping="aces",
                contrast=1.0,
                scale=1.0,
            )
            with gr.Column(visible=False, scale=1.0) as hdr_row:
                gr.Markdown(
                    """## HDR Environment Map

                Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
                """
                )

                with gr.Row():
                    hdr_illumination_file = gr.File(
                        label="HDR Env Map",
                        file_types=[".hdr"],
                        file_count="single",
                    )
                    example_hdris = [
                        os.path.join("demo_files/hdri", f)
                        for f in os.listdir("demo_files/hdri")
                    ]
                    hdr_illumination_example = gr.Examples(
                        examples=example_hdris,
                        inputs=hdr_illumination_file,
                    )

                    def update_hdr_illumination_file(state, cur_update):
                        # If the current value of hdr_illumination_file is the same as cur_update, then we don't need to update
                        if (
                            hdr_illumination_file.value is not None
                            and hdr_illumination_file.value == cur_update
                        ):
                            return (
                                gr.update(),
                                gr.update(),
                            )
                        update_value = cur_update if cur_update is not None else state
                        if update_value is not None:
                            return (
                                gr.update(value=update_value),
                                gr.update(
                                    env_map=(
                                        update_value.name
                                        if isinstance(update_value, gr.File)
                                        else update_value
                                    )
                                ),
                            )
                        return (gr.update(value=None), gr.update(env_map=None))

                    hdr_illumination_file.change(
                        update_hdr_illumination_file,
                        inputs=[hdr_illumination_file_state, hdr_illumination_file],
                        outputs=[hdr_illumination_file, output_3d],
                    )

            download_all_btn = gr.File(
                label="Download All Files (ZIP)", file_count="single", visible=False
            )

    hdr_illumination_file_state.change(
        fn=lambda x: gr.update(value=x),
        inputs=hdr_illumination_file_state,
        outputs=hdr_illumination_file,
    )

    examples = gr.Examples(
        examples=example_files, inputs=input_img, examples_per_page=11
    )

    input_img.change(
        requires_bg_remove,
        inputs=[input_img, foreground_ratio, no_crop],
        outputs=[
            run_btn,
            img_proc_state,
            background_remove_state,
            preview_removal,
            output_3d,
            hdr_row,
            hdr_illumination_file_state,
            point_cloud_row,
            point_cloud_editor,
            pc_download,
            regenerate_btn,
            download_all_btn,
        ],
    )

    point_cloud_editor.edit(
        fn=lambda _x: gr.update(visible=True),
        inputs=point_cloud_editor,
        outputs=regenerate_btn,
    )

    regenerate_btn.click(
        regenerate_run,
        inputs=[
            background_remove_state,
            guidance_scale,
            random_seed,
            point_cloud_editor,
            remesh_option,
            vertex_count_type,
            vertex_count_slider,
            texture_size,
        ],
        outputs=[
            run_btn,
            img_proc_state,
            background_remove_state,
            preview_removal,
            output_3d,
            hdr_row,
            hdr_illumination_file_state,
            point_cloud_row,
            point_cloud_editor,
            pc_download,
            regenerate_btn,
            download_all_btn,
        ],
    )

    run_btn.click(
        run_button,
        inputs=[
            run_btn,
            input_img,
            background_remove_state,
            foreground_ratio,
            no_crop,
            guidance_scale,
            random_seed,
            pc_upload,
            pc_cond_file,
            remesh_option,
            vertex_count_type,
            vertex_count_slider,
            texture_size,
        ],
        outputs=[
            run_btn,
            img_proc_state,
            background_remove_state,
            preview_removal,
            output_3d,
            hdr_row,
            hdr_illumination_file_state,
            point_cloud_row,
            point_cloud_editor,
            pc_download,
            regenerate_btn,
            download_all_btn,
        ],
    )

demo.queue().launch(share=False)