Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,17 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
-
import scipy.io.wavfile
|
5 |
import numpy as np
|
6 |
from transformers import AutoProcessor, SeamlessM4Tv2Model
|
7 |
-
from
|
8 |
-
|
9 |
|
10 |
-
class
|
11 |
def __init__(self, model_name: str = "facebook/seamless-m4t-v2-large"):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
self.sample_rate = self.model.config.sampling_rate
|
16 |
-
except Exception as e:
|
17 |
-
raise RuntimeError(f"Failed to initialize model: {str(e)}")
|
18 |
|
19 |
-
# Available language pairs
|
20 |
self.language_codes = {
|
21 |
"English": "eng",
|
22 |
"Spanish": "spa",
|
@@ -26,130 +21,135 @@ class SeamlessTranslator:
|
|
26 |
"Portuguese": "por",
|
27 |
"Russian": "rus",
|
28 |
"Chinese": "cmn",
|
29 |
-
"Japanese": "jpn"
|
30 |
-
"Korean": "kor",
|
31 |
-
"Arabic": "ara",
|
32 |
-
"Hindi": "hin",
|
33 |
}
|
34 |
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
return self.sample_rate, audio_array
|
40 |
-
except Exception as e:
|
41 |
-
raise RuntimeError(f"Text translation failed: {str(e)}")
|
42 |
-
|
43 |
-
def translate_audio(self, audio_path: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
44 |
-
try:
|
45 |
-
# Load and resample audio
|
46 |
-
audio, orig_freq = torchaudio.load(audio_path)
|
47 |
-
audio = torchaudio.functional.resample(
|
48 |
-
audio,
|
49 |
-
orig_freq=orig_freq,
|
50 |
-
new_freq=16_000
|
51 |
-
)
|
52 |
-
|
53 |
-
# Process and generate translation
|
54 |
-
inputs = self.processor(audios=audio, return_tensors="pt")
|
55 |
-
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
56 |
-
return self.sample_rate, audio_array
|
57 |
-
except Exception as e:
|
58 |
-
raise RuntimeError(f"Audio translation failed: {str(e)}")
|
59 |
-
|
60 |
-
class GradioInterface:
|
61 |
-
def __init__(self):
|
62 |
-
self.translator = SeamlessTranslator()
|
63 |
-
self.languages = list(self.translator.language_codes.keys())
|
64 |
-
|
65 |
-
def text_to_speech(self, text: str, src_lang: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
66 |
-
src_code = self.translator.language_codes[src_lang]
|
67 |
-
tgt_code = self.translator.language_codes[tgt_lang]
|
68 |
-
return self.translator.translate_text(text, src_code, tgt_code)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
# Create the Gradio interface
|
76 |
-
with gr.Blocks(title="SeamlessM4T Translator") as demo:
|
77 |
-
gr.Markdown("# 🌐 SeamlessM4T Translator")
|
78 |
-
gr.Markdown("Translate text or speech to different languages using Meta's SeamlessM4T model")
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
with gr.TabItem("Text to Speech"):
|
83 |
-
with gr.Row():
|
84 |
-
with gr.Column():
|
85 |
-
text_input = gr.Textbox(
|
86 |
-
label="Input Text",
|
87 |
-
placeholder="Enter text to translate...",
|
88 |
-
lines=3
|
89 |
-
)
|
90 |
-
src_lang = gr.Dropdown(
|
91 |
-
choices=self.languages,
|
92 |
-
value="English",
|
93 |
-
label="Source Language"
|
94 |
-
)
|
95 |
-
tgt_lang_text = gr.Dropdown(
|
96 |
-
choices=self.languages,
|
97 |
-
value="Spanish",
|
98 |
-
label="Target Language"
|
99 |
-
)
|
100 |
-
translate_btn = gr.Button("Translate", variant="primary")
|
101 |
-
|
102 |
-
with gr.Column():
|
103 |
-
audio_output = gr.Audio(
|
104 |
-
label="Translated Speech",
|
105 |
-
type="numpy"
|
106 |
-
)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
audio_input = gr.Audio(
|
119 |
-
label="Input Speech",
|
120 |
-
type="filepath"
|
121 |
-
)
|
122 |
-
tgt_lang_speech = gr.Dropdown(
|
123 |
-
choices=self.languages,
|
124 |
-
value="Spanish",
|
125 |
-
label="Target Language"
|
126 |
-
)
|
127 |
-
translate_audio_btn = gr.Button("Translate", variant="primary")
|
128 |
-
|
129 |
-
with gr.Column():
|
130 |
-
audio_output_s2s = gr.Audio(
|
131 |
-
label="Translated Speech",
|
132 |
-
type="numpy"
|
133 |
-
)
|
134 |
-
|
135 |
-
translate_audio_btn.click(
|
136 |
-
fn=self.speech_to_speech,
|
137 |
-
inputs=[audio_input, tgt_lang_speech],
|
138 |
-
outputs=audio_output_s2s
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
149 |
|
150 |
-
|
151 |
-
demo.launch(share=True)
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
-
|
155 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import torchaudio
|
|
|
4 |
import numpy as np
|
5 |
from transformers import AutoProcessor, SeamlessM4Tv2Model
|
6 |
+
from datetime import datetime
|
7 |
+
import time
|
8 |
|
9 |
+
class JarvisTranslator:
|
10 |
def __init__(self, model_name: str = "facebook/seamless-m4t-v2-large"):
|
11 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
12 |
+
self.model = SeamlessM4Tv2Model.from_pretrained(model_name)
|
13 |
+
self.sample_rate = self.model.config.sampling_rate
|
|
|
|
|
|
|
14 |
|
|
|
15 |
self.language_codes = {
|
16 |
"English": "eng",
|
17 |
"Spanish": "spa",
|
|
|
21 |
"Portuguese": "por",
|
22 |
"Russian": "rus",
|
23 |
"Chinese": "cmn",
|
24 |
+
"Japanese": "jpn"
|
|
|
|
|
|
|
25 |
}
|
26 |
|
27 |
+
def translate(self, text: str, src_lang: str, tgt_lang: str) -> tuple[int, np.ndarray]:
|
28 |
+
inputs = self.processor(text=text, src_lang=src_lang, return_tensors="pt")
|
29 |
+
audio_array = self.model.generate(**inputs, tgt_lang=tgt_lang)[0].cpu().numpy().squeeze()
|
30 |
+
return self.sample_rate, audio_array
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def create_jarvis_interface():
|
33 |
+
# Custom CSS for Jarvis-like theme
|
34 |
+
css = """
|
35 |
+
#jarvis-container {
|
36 |
+
background-color: #000000;
|
37 |
+
color: #00ffff;
|
38 |
+
font-family: 'Courier New', monospace;
|
39 |
+
padding: 20px;
|
40 |
+
border-radius: 10px;
|
41 |
+
border: 2px solid #00ffff;
|
42 |
+
}
|
43 |
+
|
44 |
+
#status-circle {
|
45 |
+
width: 150px;
|
46 |
+
height: 150px;
|
47 |
+
border: 4px solid #00ffff;
|
48 |
+
border-radius: 50%;
|
49 |
+
margin: 20px auto;
|
50 |
+
position: relative;
|
51 |
+
animation: pulse 2s infinite;
|
52 |
+
}
|
53 |
+
|
54 |
+
@keyframes pulse {
|
55 |
+
0% { box-shadow: 0 0 0 0 rgba(0, 255, 255, 0.4); }
|
56 |
+
70% { box-shadow: 0 0 0 20px rgba(0, 255, 255, 0); }
|
57 |
+
100% { box-shadow: 0 0 0 0 rgba(0, 255, 255, 0); }
|
58 |
+
}
|
59 |
+
|
60 |
+
.custom-button {
|
61 |
+
background-color: transparent !important;
|
62 |
+
border: 2px solid #00ffff !important;
|
63 |
+
color: #00ffff !important;
|
64 |
+
font-family: 'Courier New', monospace !important;
|
65 |
+
}
|
66 |
+
|
67 |
+
.custom-button:hover {
|
68 |
+
background-color: rgba(0, 255, 255, 0.1) !important;
|
69 |
+
}
|
70 |
+
|
71 |
+
.status-text {
|
72 |
+
color: #00ffff;
|
73 |
+
text-align: center;
|
74 |
+
font-size: 1.2em;
|
75 |
+
margin: 10px 0;
|
76 |
+
}
|
77 |
+
|
78 |
+
.time-display {
|
79 |
+
position: absolute;
|
80 |
+
top: 10px;
|
81 |
+
right: 10px;
|
82 |
+
color: #00ffff;
|
83 |
+
font-family: 'Courier New', monospace;
|
84 |
+
}
|
85 |
+
"""
|
86 |
|
87 |
+
translator = JarvisTranslator()
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def update_status():
|
90 |
+
return f"JARVIS AI SYSTEM ACTIVE\nTime: {datetime.now().strftime('%H:%M:%S')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
def process_command(text, src_lang, tgt_lang):
|
93 |
+
status = f"Processing command: {text}\nSource: {src_lang} → Target: {tgt_lang}"
|
94 |
+
time.sleep(1) # Simulate processing
|
95 |
+
try:
|
96 |
+
sample_rate, audio = translator.translate(text,
|
97 |
+
translator.language_codes[src_lang],
|
98 |
+
translator.language_codes[tgt_lang])
|
99 |
+
return audio, status + "\nStatus: Translation complete"
|
100 |
+
except Exception as e:
|
101 |
+
return None, f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
+
with gr.Blocks(css=css, title="JARVIS AI") as demo:
|
104 |
+
with gr.Column(elem_id="jarvis-container"):
|
105 |
+
gr.Markdown("# JARVIS AI TRANSLATION SYSTEM")
|
106 |
+
|
107 |
+
# Status display
|
108 |
+
status_html = gr.HTML(value="<div id='status-circle'></div>", show_label=False)
|
109 |
+
status_text = gr.Textbox(label="System Status", value=update_status)
|
110 |
+
|
111 |
+
with gr.Row():
|
112 |
+
text_input = gr.Textbox(
|
113 |
+
label="Command Input",
|
114 |
+
placeholder="Enter text to translate...",
|
115 |
+
lines=3
|
116 |
+
)
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
src_lang = gr.Dropdown(
|
120 |
+
choices=list(translator.language_codes.keys()),
|
121 |
+
value="English",
|
122 |
+
label="Source Language"
|
123 |
+
)
|
124 |
+
tgt_lang = gr.Dropdown(
|
125 |
+
choices=list(translator.language_codes.keys()),
|
126 |
+
value="Spanish",
|
127 |
+
label="Target Language"
|
128 |
+
)
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
process_btn = gr.Button("Execute Translation", elem_classes=["custom-button"])
|
132 |
+
|
133 |
+
audio_output = gr.Audio(
|
134 |
+
label="Translated Output",
|
135 |
+
type="numpy"
|
136 |
+
)
|
137 |
+
|
138 |
+
# Event handlers
|
139 |
+
process_btn.click(
|
140 |
+
fn=process_command,
|
141 |
+
inputs=[text_input, src_lang, tgt_lang],
|
142 |
+
outputs=[audio_output, status_text]
|
143 |
+
)
|
144 |
+
|
145 |
+
demo.load(
|
146 |
+
fn=update_status,
|
147 |
+
outputs=status_text,
|
148 |
+
every=1 # Update every second
|
149 |
)
|
150 |
|
151 |
+
return demo
|
|
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
+
demo = create_jarvis_interface()
|
155 |
+
demo.launch()
|