BLLAMA / export_hf_checkpoint.py
DESUCLUB's picture
Upload 14 files
da79fd7
raw
history blame
1.59 kB
import os
import json
import torch
from peft import PeftModel, LoraConfig
import transformers
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
base_model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=False,
torch_dtype=torch.float16,
device_map={"": "cpu"},
)
first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()
lora_model = PeftModel.from_pretrained(
base_model,
"tloen/alpaca-lora-7b",
device_map={"": "cpu"},
torch_dtype=torch.float16,
)
lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight
assert torch.allclose(first_weight_old, first_weight)
# merge weights
for layer in lora_model.base_model.model.model.layers:
layer.self_attn.q_proj.merge_weights = True
layer.self_attn.v_proj.merge_weights = True
lora_model.train(False)
# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)
lora_model_sd = lora_model.state_dict()
deloreanized_sd = {
k.replace("base_model.model.", ""): v
for k, v in lora_model_sd.items()
if "lora" not in k
}
LlamaForCausalLM.save_pretrained(
base_model, "./hf_ckpt", state_dict=deloreanized_sd, max_shard_size="400MB"
)