create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Charger le modèle
|
6 |
+
model_name = "bigcode/starcoder2-15b-instruct-v0.1"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
model_name,
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
device_map="auto"
|
12 |
+
)
|
13 |
+
|
14 |
+
# Fonction pour générer du texte
|
15 |
+
def generate_text(prompt):
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
17 |
+
outputs = model.generate(inputs["input_ids"], max_length=200)
|
18 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
+
|
20 |
+
# Interface utilisateur Gradio
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=generate_text,
|
23 |
+
inputs=gr.Textbox(label="Entrez votre instruction"),
|
24 |
+
outputs=gr.Textbox(label="Résultat généré"),
|
25 |
+
title="StarCoder2-15B-Instruct"
|
26 |
+
)
|
27 |
+
|
28 |
+
# Lancer l'application
|
29 |
+
interface.launch()
|