CyberNative's picture
Update app.py
931cd7a verified
import gradio as gr
import os
import spaces
from transformers import AutoTokenizer, TextIteratorStreamer
from threading import Thread
from llama_cpp import Llama
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">CyberNative-AI/Colibri_8b_v0.1</h1>
<p>This Space demonstrates the CyberSecurity-tuned model <a href="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1"><b>Colibri_8b_v0.1</b></a>.
</div>
'''
LICENSE = """
<p/>
---
Colibri v0.1 is built on top of Dolphin Llama 3
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1/resolve/main/cybernative_ai_colibri_logo.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Colibri_v0.1</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
conversation = []
conversation.append({"role": "system", "content": "You are Colibri, an advanced cybersecurity AI assistant developed by CyberNative AI."})
for user, assistant in history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
llm = Llama.from_pretrained(
repo_id="CyberNative-AI/Colibri_8b_v0.1_q5_gguf",
filename="*Q5_K_M.gguf",
chat_format="chatml",
verbose=False,
max_tokens=max_new_tokens,
stop=["<|im_end|>"]
)
response=llm.create_chat_completion(messages=conversation, temperature=temperature)
# Access the first (and likely only) choice in the response
choice = response['choices'][0]
# Extract the text content from the message within the choice
text_response = choice['message']['content']
yield text_response
# Gradio block
chatbot=gr.Chatbot(height=700, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.6,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['What are the two main methods used in the research to collect DKIM information?'],
['What is the primary purpose of OS fingerprinting using tools like Nmap, and why might it not always be 100% accurate?'],
['What is 9,000 * 9,000?'],
['What technique can be used to enumerate SMB shares within a Windows environment from a Windows client?'],
['What is the primary benefit of interleaving in cybersecurity education and training?']
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()