|
import gradio as gr |
|
import os |
|
import spaces |
|
from transformers import AutoTokenizer, TextIteratorStreamer |
|
from threading import Thread |
|
from llama_cpp import Llama |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None) |
|
|
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">CyberNative-AI/Colibri_8b_v0.1</h1> |
|
<p>This Space demonstrates the CyberSecurity-tuned model <a href="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1"><b>Colibri_8b_v0.1</b></a>. |
|
</div> |
|
''' |
|
|
|
LICENSE = """ |
|
<p/> |
|
--- |
|
Colibri v0.1 is built on top of Dolphin Llama 3 |
|
""" |
|
|
|
PLACEHOLDER = """ |
|
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> |
|
<img src="https://huggingface.co/CyberNative-AI/Colibri_8b_v0.1/resolve/main/cybernative_ai_colibri_logo.jpeg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; "> |
|
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Colibri_v0.1</h1> |
|
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> |
|
</div> |
|
""" |
|
|
|
|
|
css = """ |
|
h1 { |
|
text-align: center; |
|
display: block; |
|
} |
|
#duplicate-button { |
|
margin: auto; |
|
color: white; |
|
background: #1565c0; |
|
border-radius: 100vh; |
|
} |
|
""" |
|
|
|
@spaces.GPU(duration=120) |
|
def chat_llama3_8b(message: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int |
|
) -> str: |
|
""" |
|
Generate a streaming response using the llama3-8b model. |
|
Args: |
|
message (str): The input message. |
|
history (list): The conversation history used by ChatInterface. |
|
temperature (float): The temperature for generating the response. |
|
max_new_tokens (int): The maximum number of new tokens to generate. |
|
Returns: |
|
str: The generated response. |
|
""" |
|
conversation = [] |
|
conversation.append({"role": "system", "content": "You are Colibri, an advanced cybersecurity AI assistant developed by CyberNative AI."}) |
|
for user, assistant in history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
llm = Llama.from_pretrained( |
|
repo_id="CyberNative-AI/Colibri_8b_v0.1_q5_gguf", |
|
filename="*Q5_K_M.gguf", |
|
chat_format="chatml", |
|
verbose=False, |
|
max_tokens=max_new_tokens, |
|
stop=["<|im_end|>"] |
|
) |
|
|
|
response=llm.create_chat_completion(messages=conversation, temperature=temperature) |
|
|
|
choice = response['choices'][0] |
|
|
|
|
|
text_response = choice['message']['content'] |
|
|
|
yield text_response |
|
|
|
|
|
|
|
chatbot=gr.Chatbot(height=700, placeholder=PLACEHOLDER, label='Gradio ChatInterface') |
|
|
|
with gr.Blocks(fill_height=True, css=css) as demo: |
|
|
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=chat_llama3_8b, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.6, |
|
label="Temperature", |
|
render=False), |
|
gr.Slider(minimum=128, |
|
maximum=4096, |
|
step=1, |
|
value=512, |
|
label="Max new tokens", |
|
render=False ), |
|
], |
|
examples=[ |
|
['What are the two main methods used in the research to collect DKIM information?'], |
|
['What is the primary purpose of OS fingerprinting using tools like Nmap, and why might it not always be 100% accurate?'], |
|
['What is 9,000 * 9,000?'], |
|
['What technique can be used to enumerate SMB shares within a Windows environment from a Windows client?'], |
|
['What is the primary benefit of interleaving in cybersecurity education and training?'] |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |