Corey Morris
commited on
Commit
·
bdad6e6
1
Parent(s):
1f8cc2a
Refactor of create_plot
Browse files
app.py
CHANGED
@@ -98,36 +98,40 @@ st.download_button(
|
|
98 |
mime="text/csv",
|
99 |
)
|
100 |
|
101 |
-
|
102 |
-
def create_plot(df, arc_column, moral_column, models=None):
|
103 |
if models is not None:
|
104 |
df = df[df.index.isin(models)]
|
105 |
|
106 |
# remove rows with NaN values
|
107 |
-
df = df.dropna(subset=[
|
108 |
|
109 |
plot_data = pd.DataFrame({
|
110 |
'Model': df.index,
|
111 |
-
|
112 |
-
|
113 |
})
|
114 |
|
115 |
plot_data['color'] = 'purple'
|
116 |
-
fig = px.scatter(plot_data, x=
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
# Add a dashed line at 0.25 for the
|
124 |
-
x_min = df[
|
125 |
-
x_max = df[
|
126 |
|
127 |
-
y_min = df[
|
128 |
-
y_max = df[
|
129 |
|
130 |
-
if
|
131 |
fig.add_shape(
|
132 |
type='line',
|
133 |
x0=0.25, x1=0.25,
|
@@ -139,7 +143,7 @@ def create_plot(df, arc_column, moral_column, models=None):
|
|
139 |
)
|
140 |
)
|
141 |
|
142 |
-
if
|
143 |
fig.add_shape(
|
144 |
type='line',
|
145 |
x0=x_min, x1=x_max,
|
@@ -151,9 +155,9 @@ def create_plot(df, arc_column, moral_column, models=None):
|
|
151 |
)
|
152 |
)
|
153 |
|
154 |
-
|
155 |
return fig
|
156 |
|
|
|
157 |
# Custom scatter plots
|
158 |
st.header('Custom scatter plots')
|
159 |
st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.")
|
@@ -177,11 +181,11 @@ plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
|
177 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
178 |
st.plotly_chart(fig)
|
179 |
|
|
|
180 |
st.markdown("### Moral Scenarios Performance")
|
181 |
st.write("While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher. There are no models with less than 13 billion parameters with performance much better than random chance.")
|
182 |
|
183 |
-
|
184 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios')
|
185 |
st.plotly_chart(fig)
|
186 |
|
187 |
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
|
|
|
98 |
mime="text/csv",
|
99 |
)
|
100 |
|
101 |
+
def create_plot(df, x_values, y_values, models=None, title=None):
|
|
|
102 |
if models is not None:
|
103 |
df = df[df.index.isin(models)]
|
104 |
|
105 |
# remove rows with NaN values
|
106 |
+
df = df.dropna(subset=[x_values, y_values])
|
107 |
|
108 |
plot_data = pd.DataFrame({
|
109 |
'Model': df.index,
|
110 |
+
x_values: df[x_values],
|
111 |
+
y_values: df[y_values],
|
112 |
})
|
113 |
|
114 |
plot_data['color'] = 'purple'
|
115 |
+
fig = px.scatter(plot_data, x=x_values, y=y_values, color='color', hover_data=['Model'], trendline="ols")
|
116 |
+
layout_args = dict(
|
117 |
+
showlegend=False,
|
118 |
+
xaxis_title=x_values,
|
119 |
+
yaxis_title=y_values,
|
120 |
+
xaxis=dict(),
|
121 |
+
yaxis=dict()
|
122 |
+
)
|
123 |
+
if title is not None: # Only set the title if provided
|
124 |
+
layout_args['title'] = title
|
125 |
+
fig.update_layout(**layout_args)
|
126 |
|
127 |
+
# Add a dashed line at 0.25 for the y_values
|
128 |
+
x_min = df[x_values].min()
|
129 |
+
x_max = df[x_values].max()
|
130 |
|
131 |
+
y_min = df[y_values].min()
|
132 |
+
y_max = df[y_values].max()
|
133 |
|
134 |
+
if x_values.startswith('MMLU'):
|
135 |
fig.add_shape(
|
136 |
type='line',
|
137 |
x0=0.25, x1=0.25,
|
|
|
143 |
)
|
144 |
)
|
145 |
|
146 |
+
if y_values.startswith('MMLU'):
|
147 |
fig.add_shape(
|
148 |
type='line',
|
149 |
x0=x_min, x1=x_max,
|
|
|
155 |
)
|
156 |
)
|
157 |
|
|
|
158 |
return fig
|
159 |
|
160 |
+
|
161 |
# Custom scatter plots
|
162 |
st.header('Custom scatter plots')
|
163 |
st.write("As expected, there is a strong positive relationship between the number of parameters and average performance on the MMLU evaluation.")
|
|
|
181 |
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
182 |
st.plotly_chart(fig)
|
183 |
|
184 |
+
# Moral scenarios plots
|
185 |
st.markdown("### Moral Scenarios Performance")
|
186 |
st.write("While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher. There are no models with less than 13 billion parameters with performance much better than random chance.")
|
187 |
|
188 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
|
|
189 |
st.plotly_chart(fig)
|
190 |
|
191 |
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns)
|