Corey Morris commited on
Commit
1a1910c
·
1 Parent(s): d96fdf9

WIP. Loading data from csv

Browse files
Files changed (2) hide show
  1. app.py +6 -13
  2. result_data_processor.py +4 -0
app.py CHANGED
@@ -9,19 +9,8 @@ from streamlit.components.v1 import html
9
 
10
  st.set_page_config(layout="wide")
11
 
12
- # Google Analytics code snippet
13
- google_analytics_code = """
14
- <!-- Google tag (gtag.js) -->
15
- <script async src="https://www.googletagmanager.com/gtag/js?id=G-MT9QYR70MC"></script>
16
- <script>
17
- window.dataLayer = window.dataLayer || [];
18
- function gtag(){dataLayer.push(arguments);}
19
- gtag('js', new Date());
20
- gtag('config', 'G-MT9QYR70MC');
21
- </script>
22
- """
23
- html(google_analytics_code, height=0)
24
-
25
 
26
 
27
  def plot_top_n(df, target_column, n=10):
@@ -135,6 +124,10 @@ st.markdown("""
135
  [Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b)
136
  """)
137
 
 
 
 
 
138
  filters = st.checkbox('Select Models and/or Evaluations')
139
 
140
  # Initialize selected columns with "Parameters" and "MMLU_average" if filters are checked
 
9
 
10
  st.set_page_config(layout="wide")
11
 
12
+ def load_csv_data(file_path):
13
+ return pd.read_csv(file_path)
 
 
 
 
 
 
 
 
 
 
 
14
 
15
 
16
  def plot_top_n(df, target_column, n=10):
 
124
  [Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b)
125
  """)
126
 
127
+ # Load the data into memory
128
+ data_path = "result_data.csv" # Replace with your actual file path
129
+ data_df = load_csv_data(data_path)
130
+
131
  filters = st.checkbox('Select Models and/or Evaluations')
132
 
133
  # Initialize selected columns with "Parameters" and "MMLU_average" if filters are checked
result_data_processor.py CHANGED
@@ -156,6 +156,10 @@ class ResultDataProcessor:
156
 
157
  data = self.manual_removal_of_models(data)
158
 
 
 
 
 
159
  return data
160
 
161
  def manual_removal_of_models(self, df):
 
156
 
157
  data = self.manual_removal_of_models(data)
158
 
159
+ # save to csv with the current date as part of the filename
160
+
161
+ data.to_csv(f'processed_data_{pd.Timestamp.now().strftime("%Y-%m-%d")}.csv')
162
+
163
  return data
164
 
165
  def manual_removal_of_models(self, df):