Corey Morris
commited on
Commit
·
12a9766
1
Parent(s):
18ec1ba
Moved radar plots to higher in the page
Browse files
app.py
CHANGED
@@ -276,32 +276,6 @@ else:
|
|
276 |
|
277 |
|
278 |
# end of custom scatter plots
|
279 |
-
st.markdown("## Notable findings and plots")
|
280 |
-
|
281 |
-
st.markdown('### Abstract Algebra Performance')
|
282 |
-
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.")
|
283 |
-
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
284 |
-
|
285 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
286 |
-
st.plotly_chart(fig)
|
287 |
-
|
288 |
-
# Moral scenarios plots
|
289 |
-
st.markdown("### Moral Scenarios Performance")
|
290 |
-
st.write("""
|
291 |
-
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
292 |
-
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
293 |
-
identify capabilities that are important for moral reasoning.
|
294 |
-
""")
|
295 |
-
|
296 |
-
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
297 |
-
st.plotly_chart(fig)
|
298 |
-
st.write()
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
303 |
-
st.plotly_chart(fig)
|
304 |
-
|
305 |
|
306 |
# Section to select a model and display radar and line charts
|
307 |
st.header("Compare a Selected Model to the 5 Models Closest in MMLU Average Performance")
|
@@ -338,6 +312,36 @@ fig_radar_top_differences = create_radar_chart_unfilled(filtered_data, closest_m
|
|
338 |
# Display the radar chart
|
339 |
st.plotly_chart(fig_radar_top_differences)
|
340 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***")
|
342 |
|
343 |
st.markdown("""
|
|
|
276 |
|
277 |
|
278 |
# end of custom scatter plots
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
# Section to select a model and display radar and line charts
|
281 |
st.header("Compare a Selected Model to the 5 Models Closest in MMLU Average Performance")
|
|
|
312 |
# Display the radar chart
|
313 |
st.plotly_chart(fig_radar_top_differences)
|
314 |
|
315 |
+
|
316 |
+
st.markdown("## Notable findings and plots")
|
317 |
+
|
318 |
+
st.markdown('### Abstract Algebra Performance')
|
319 |
+
st.write("Small models showed surprisingly strong performance on the abstract algebra task. A 6 Billion parameter model is tied for the best performance on this task and there are a number of other small models in the top 10.")
|
320 |
+
plot_top_n(filtered_data, 'MMLU_abstract_algebra', 10)
|
321 |
+
|
322 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra')
|
323 |
+
st.plotly_chart(fig)
|
324 |
+
|
325 |
+
# Moral scenarios plots
|
326 |
+
st.markdown("### Moral Scenarios Performance")
|
327 |
+
st.write("""
|
328 |
+
While smaller models can perform well at many tasks, the model size threshold for decent performance on moral scenarios is much higher.
|
329 |
+
There are no models with less than 13 billion parameters with performance much better than random chance. Further investigation into other capabilities that emerge at 13 billion parameters could help
|
330 |
+
identify capabilities that are important for moral reasoning.
|
331 |
+
""")
|
332 |
+
|
333 |
+
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios', title="Impact of Parameter Count on Accuracy for Moral Scenarios")
|
334 |
+
st.plotly_chart(fig)
|
335 |
+
st.write()
|
336 |
+
|
337 |
+
|
338 |
+
|
339 |
+
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios')
|
340 |
+
st.plotly_chart(fig)
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
|
345 |
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***")
|
346 |
|
347 |
st.markdown("""
|