|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from result_data_processor import ResultDataProcessor |
|
|
|
data_provider = ResultDataProcessor() |
|
|
|
|
|
st.title('MMLU-by-Task Evaluation Results for 500+ Open Source Models') |
|
st.markdown("""***Last updated August 7th***""") |
|
st.markdown(""" |
|
Hugging Face has run evaluations on over 500 open source models and provides results on a |
|
[publicly available leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) and [dataset](https://huggingface.co/datasets/open-llm-leaderboard/results). |
|
The leaderboard currently displays the overall result for MMLU. This page shows individual accuracy scores for all 57 tasks of the MMLU evaluation. |
|
[Preliminary analysis of MMLU-by-Task data](https://coreymorrisdata.medium.com/preliminary-analysis-of-mmlu-evaluation-data-insights-from-500-open-source-models-e67885aa364b) |
|
""") |
|
|
|
filters = st.checkbox('Select Models and Evaluations') |
|
|
|
|
|
selected_columns = data_provider.data.columns.tolist() |
|
selected_models = data_provider.data.index.tolist() |
|
|
|
if filters: |
|
|
|
selected_columns = st.multiselect( |
|
'Select Columns', |
|
data_provider.data.columns.tolist(), |
|
default=selected_columns |
|
) |
|
|
|
selected_models = st.multiselect( |
|
'Select Models', |
|
data_provider.data.index.tolist(), |
|
default=selected_models |
|
) |
|
|
|
|
|
st.header('Sortable table') |
|
filtered_data = data_provider.get_data(selected_models) |
|
|
|
|
|
filtered_data = filtered_data.sort_values(by=['MMLU_average'], ascending=False) |
|
st.dataframe(filtered_data[selected_columns]) |
|
|
|
|
|
|
|
filtered_data.index.name = "Model Name" |
|
|
|
csv = filtered_data.to_csv(index=True) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=csv, |
|
file_name="model_evaluation_results.csv", |
|
mime="text/csv", |
|
) |
|
|
|
|
|
def create_plot(df, arc_column, moral_column, models=None): |
|
if models is not None: |
|
df = df[df.index.isin(models)] |
|
|
|
|
|
df = df.dropna(subset=[arc_column, moral_column]) |
|
|
|
plot_data = pd.DataFrame({ |
|
'Model': df.index, |
|
arc_column: df[arc_column], |
|
moral_column: df[moral_column], |
|
}) |
|
|
|
plot_data['color'] = 'purple' |
|
fig = px.scatter(plot_data, x=arc_column, y=moral_column, color='color', hover_data=['Model'], trendline="ols") |
|
fig.update_layout(showlegend=False, |
|
xaxis_title=arc_column, |
|
yaxis_title=moral_column, |
|
xaxis = dict(), |
|
yaxis = dict()) |
|
|
|
|
|
x_min = df[arc_column].min() |
|
x_max = df[arc_column].max() |
|
|
|
y_min = df[moral_column].min() |
|
y_max = df[moral_column].max() |
|
|
|
if arc_column.startswith('MMLU'): |
|
fig.add_shape( |
|
type='line', |
|
x0=0.25, x1=0.25, |
|
y0=y_min, y1=y_max, |
|
line=dict( |
|
color='red', |
|
width=2, |
|
dash='dash' |
|
) |
|
) |
|
|
|
if moral_column.startswith('MMLU'): |
|
fig.add_shape( |
|
type='line', |
|
x0=x_min, x1=x_max, |
|
y0=0.25, y1=0.25, |
|
line=dict( |
|
color='red', |
|
width=2, |
|
dash='dash' |
|
) |
|
) |
|
|
|
|
|
return fig |
|
|
|
|
|
st.header('Custom scatter plots') |
|
selected_x_column = st.selectbox('Select x-axis', filtered_data.columns.tolist(), index=0) |
|
selected_y_column = st.selectbox('Select y-axis', filtered_data.columns.tolist(), index=3) |
|
|
|
if selected_x_column != selected_y_column: |
|
fig = create_plot(filtered_data, selected_x_column, selected_y_column) |
|
st.plotly_chart(fig) |
|
else: |
|
st.write("Please select different columns for the x and y axes.") |
|
|
|
|
|
|
|
st.header('Moral Scenarios Performance') |
|
st.write("The dashed red line represents the random chance performance of 0.25") |
|
|
|
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_moral_scenarios') |
|
st.plotly_chart(fig) |
|
|
|
fig = create_plot(filtered_data, 'Parameters', 'MMLU_moral_scenarios') |
|
st.plotly_chart(fig) |
|
|
|
fig = px.histogram(filtered_data, x="MMLU_moral_scenarios", marginal="rug", hover_data=filtered_data.columns) |
|
st.plotly_chart(fig) |
|
|
|
st.header('Abstract Algebra Performance') |
|
fig = create_plot(filtered_data, 'Parameters', 'MMLU_abstract_algebra') |
|
st.plotly_chart(fig) |
|
|
|
fig = create_plot(filtered_data, 'MMLU_average', 'MMLU_abstract_algebra') |
|
st.plotly_chart(fig) |
|
|
|
|
|
st.markdown("***Thank you to hugging face for running the evaluations and supplying the data as well as the original authors of the evaluations.***") |
|
|
|
st.markdown(""" |
|
# References |
|
|
|
1. Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar Sanseviero, Lewis Tunstall, Thomas Wolf. (2023). *Open LLM Leaderboard*. Hugging Face. [link](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
2. Gao, Leo et al. (2021). *A framework for few-shot language model evaluation*. Zenodo. [link](https://doi.org/10.5281/zenodo.5371628) |
|
|
|
3. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord. (2018). *Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge*. arXiv. [link](https://arxiv.org/abs/1803.05457) |
|
|
|
4. Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, Yejin Choi. (2019). *HellaSwag: Can a Machine Really Finish Your Sentence?*. arXiv. [link](https://arxiv.org/abs/1905.07830) |
|
|
|
5. Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, Jacob Steinhardt. (2021). *Measuring Massive Multitask Language Understanding*. arXiv. [link](https://arxiv.org/abs/2009.03300) |
|
|
|
6. Stephanie Lin, Jacob Hilton, Owain Evans. (2022). *TruthfulQA: Measuring How Models Mimic Human Falsehoods*. arXiv. [link](https://arxiv.org/abs/2109.07958) |
|
""") |
|
|