Spaces:
Paused
Paused
from fastapi import FastAPI | |
from fastapi.middleware.cors import CORSMiddleware | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
import torch | |
import os | |
import requests | |
# from langchain.llms.huggingface_pipeline import HuggingFacePipeline | |
# API_URL = "/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fmistralai%2FMistral-7B-v0.1%26quot%3B%3C%2Fspan%3E%3C!-- HTML_TAG_END --> | |
# headers = {"Authorization": f"Bearer {key}"} | |
# def query(payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
def LLM(llm_name, length): | |
print(llm_name) | |
tokenizer = AutoTokenizer.from_pretrained(llm_name) | |
model = AutoModelForCausalLM.from_pretrained(llm_name,trust_remote_code=True) | |
pipe = pipeline("text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_length=length, | |
do_sample=True, | |
top_p=0.95, | |
repetition_penalty=1.2, | |
) | |
return pipe | |
pipe = LLM("microsoft/phi-2",2000) | |
# tokenizer = AutoTokenizer.from_pretrained("WizardLM/WizardCoder-1B-V1.0") | |
# base_model = AutoModelForCausalLM.from_pretrained("WizardLM/WizardCoder-1B-V1.0") | |
# Mistral 7B | |
# mistral_llm = LLM("mistralai/Mistral-7B-v0.1",30000) | |
mistral_llm = pipe | |
# WizardCoder 13B | |
# wizard_llm = LLM("WizardLM/WizardCoder-Python-13B-V1.0",8000) | |
wizard_llm = pipe | |
# hf_llm = HuggingFacePipeline(pipeline=pipe) | |
def ask_model(model, prompt): | |
if(model == 'mistral'): | |
return mistral_llm(prompt) | |
if(model == 'wizard'): | |
return wizard_llm(prompt) | |
key = os.environ.get("huggingface_key") | |
openai_api_key = os.environ.get("openai_key") | |
app = FastAPI(openapi_url="/api/v1/LLM/openapi.json", docs_url="/api/v1/LLM/docs") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_methods=["*"], | |
allow_headers=["*"], | |
allow_credentials=True, | |
) | |
def root(): | |
return {"message": "R&D LLM API"} | |
# @app.get("/get") | |
# def get(): | |
# result = pipe("name 5 programming languages",do_sample=False) | |
# print(result) | |
# return {"message": result} | |
async def ask_llm_endpoint(model:str, prompt: str): | |
result = ask_model(model,prompt) | |
return {"result": result} | |
# APIs | |
# @app.post("/ask_HFAPI") | |
# def ask_HFAPI_endpoint(prompt: str): | |
# result = query(prompt) | |
# return {"result": result} | |
from langchain.llms import OpenAI | |
llm = OpenAI(model_name="text-davinci-003", temperature=0.5, openai_api_key=openai_api_key) | |
def ask_GPT_endpoint(prompt: str): | |
result = llm(prompt) | |
return {"result": result} |