import gradio as gr
import cohere
import os
import re
import uuid
import secrets
cohere_api_key = os.getenv("COHERE_API_KEY")
AYA_MODEL_NAME = os.getenv("AYA_MODEL_NAME")
co = cohere.Client(cohere_api_key, client_name="huggingface-aya-23")
def trigger_example(example):
chat, updated_history = generate_response(example)
return chat, updated_history
def generate_response(user_message, cid, token, history=None):
if not token:
raise gr.Error("Error loading.")
if history is None:
history = []
if cid == "" or None:
cid = str(uuid.uuid4())
print(f"cid: {cid} prompt:{user_message}")
history.append(user_message)
stream = co.chat_stream(message=user_message, conversation_id=cid, model=AYA_MODEL_NAME, connectors=[], temperature=0.3)
#stream = co.generate(prompt=user_message, model='c4ai-aya-23')
output = ""
for idx, response in enumerate(stream):
if response.event_type == "text-generation":
output += response.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history, cid
return chat, history, cid
def clear_chat():
return [], [], str(uuid.uuid4())
examples = [
"Explain the relativity theory in French",
"Como sair de um helicóptero que caiu na água?",
"¿Cómo le explicarías el aprendizaje automático a un extraterrestre?",
"Explain gravity to a chicken.",
"Descrivi il processo di creazione di un capolavoro, come se fossi un artista del Rinascimento a Firenze.",
"Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz",
"Explique-moi le sens de la vie selon un grand auteur littéraire.",
"Give me an example of an endangered species and let me know what I can do to help preserve it",
"یک پاراگراف در مورد زیباییهای طبیعت در فصل پاییز بنویس",
"Wie kann ich lernen, selbstbewusster zu werden?",
"Formally introduce the transformer architecture with notation.",
]
custom_css = """
#logo-img {
border: none !important;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
cid = gr.State("")
token = gr.State(value=None)
with gr.Row():
with gr.Column(scale=1):
gr.Image("aya-logo.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False)
with gr.Column(scale=3):
gr.Markdown("""C4AI Aya 23 is a research open weights release of an 8 and 35 billion parameter with highly advanced instruction fine-tuned model, covering 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese.
**Note**: Aya 23 is a single-turn instruction-following model and it is not optimized for chat mode use.
**Model**: [aya-23-35B](https://huggingface.co/CohereForAI/aya-23-35B)
**Developed by**: [Cohere for AI](https://cohere.com/research) and [Cohere](https://cohere.com/)
**License**: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)
"""
)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True)
with gr.Row():
user_message = gr.Textbox(lines=1, placeholder="Ask anything ...", label="Input", show_label=False)
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear chat")
history = gr.State([])
user_message.submit(fn=generate_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
submit_button.click(fn=generate_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)
user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
with gr.Row():
gr.Examples(
examples=examples,
inputs=user_message,
cache_examples=False,
fn=trigger_example,
outputs=[chatbot],
examples_per_page=100
)
demo.load(lambda: secrets.token_hex(16), None, token)
if __name__ == "__main__":
# demo.launch(debug=True)
try:
demo.queue(api_open=False, max_size=40).launch(show_api=False)
except Exception as e:
print(f"Error: {e}")