aCogSphere11 / bcogsphere.py
CognitiveScience's picture
Create bcogsphere.py
a4ec550
raw
history blame
1.66 kB
from bs4 import BeautifulSoup
import requests
#from python_actr import *
#from cogscidighum import *
#class myCelSci(Model):
# pass
def bcf(link): #add source? and for sentsummary: https://huggingface.co/themanas021
HEADER = {"User-Agent": 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'}
#link = "https://youtu.be/vQUCSHUlN-k?si=FfIsODGjJDzIHOAS"
bcfresponse = requests.get(link) #, headers=HEADER)
soup = BeautifulSoup(bcfresponse.text, "html.parser")
#print (soup.prettify())
titleSoupMeta = soup.find("meta", property="og:title")
videoTitle = titleSoupMeta["content"] if titleSoupMeta else "NotFound"
bcfresult = {}
bcfresult["views"] = soup.find("meta", itemprop="interactionCount")['content']
#soup=soup.prettify()
#viewSoupMeta = [line for line in soup.split('viewCount') if "views" in line]
#response2=bcfresult.text[bcfresponse.text.find("viewCount"):].split('"')[2]
# Store JSON data in API_Data
#for key in API_Data:{
# print(key,":", API_Data[key])
#}
#viewSoupMeta=viewSoupMeta[19:25]
##videoViews = viewSoupMeta["content"] if titleSoupMeta else "NotFound"
'''
if soup.find(attrs={"viewCount": "3363"}) == None:
viewSoupMeta = "3363" #soup.find(attrs={"class": "watch-view-count"}).text
else:
viewSoupMeta= soup
'''
#viewSoupMeta = API_Data #str(response).find("viewCount")
#celsci1=myCelSci()
#response3= bcfresponse #celsci1.ax1 #celsci1.fame(300) #checkfame("dd")
return bcfresult #result #soup.prettify()