aCogSphere11 / app.py
CognitiveScience's picture
Create app.py
4fe8a03
raw
history blame
7.75 kB
import gradio as gr
from bs4 import BeautifulSoup
import requests
from acogsphere import acf
from bcogsphere import bcf
import math
import glob
#from python_actr import *
#from cogscidighum import *
#class myCelSci(Model):
# pass
#def main(link):
# response=getviews(link)+getresult("hello world")[0]["label"] + str(math.trunc(getresult("hello world")[0]["score"])*100/100)
# return response #result #soup.prettify()
import sqlite3
import huggingface_hub
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler
import random
import time
DB_FILE = "./reviews.db"
TOKEN = os.environ.get('HF_KEY')
repo = huggingface_hub.Repository(
local_dir="data",
repo_type="dataset",
clone_from="CognitiveScience/csdhdata",
use_auth_token=TOKEN
)
repo.git_pull()
# Set db to latest
shutil.copyfile("./data/reviews.db", DB_FILE)
# Create table if it doesn't already exist
db = sqlite3.connect(DB_FILE)
try:
db.execute("SELECT * FROM reviews").fetchall()
db.close()
except sqlite3.OperationalError:
db.execute(
'''
CREATE TABLE reviews (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
name TEXT, review INTEGER, comments TEXT)
''')
db.commit()
db.close()
def get_latest_reviews(db: sqlite3.Connection):
reviews = db.execute("SELECT * FROM reviews ORDER BY id DESC limit 10").fetchall()
total_reviews = db.execute("Select COUNT(id) from reviews").fetchone()[0]
reviews = pd.DataFrame(reviews, columns=["id", "date_created", "name", "review", "comments"])
return reviews, total_reviews
def add_review(name: str, review: int, comments: str):
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("INSERT INTO reviews(name, review, comments) VALUES(?,?,?)", [name, review, comments])
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
def load_data():
db = sqlite3.connect(DB_FILE)
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
def delete_review(id: int):
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("DELETE FROM reviews WHERE id = ?", [id])
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
def delete_all_reviews():
db = sqlite3.connect(DB_FILE)
cursor = db.cursor()
cursor.execute("DELETE FROM reviews")
db.commit()
reviews, total_reviews = get_latest_reviews(db)
db.close()
return reviews, total_reviews
#def cs(link):
# response="Hi " + "bcf" #(link) #acf("hello world")[0]["label"] + str(math.trunc(acf("hello world")[0]["score"])*100/100)+bcf(link)
# return response #result #soup.prettify()
def respond3(message, chat_history):
bot_message = random.choice(["How are you3?", "I love you3", "I'm very hungry3"])
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown("Based on dataset [here](https://huggingface.co/datasets/freddyaboulton/gradio-reviews)")
#data = gr.Dataframe()
count = gr.Number(label="Total number of reviews")
name = gr.Textbox(label="Name", placeholder="ur name?")
review = gr.Radio(label="How satisfied are you with your pick?", choices=[1, 2, 3, 4, 5, 6])
comments = gr.Textbox(label="Comments0", lines=10, placeholder="comm?")
cssubmit = gr.Button(value="Submit Choice")
#cschatbot = gr.Chatbot()
#csinp = gr.Textbox()
#csout=cs(csinp)
#csclear = gr.ClearButton([csinp, cschatbot])
#csinp.submit(cs, [csinp, cschatbot], [csinp, cschatbot])
def cs(link):
response="Hi " + link #(link) #acf("hello world")[0]["label"] + str(math.trunc(acf("hello world")[0]["score"])*100/100)+bcf(link)
return response,1 #result #soup.prettify()
cssubmit.click(cs, name, [comments,count])
with gr.Row():
with gr.Column():
name = gr.Textbox(label="Name", placeholder="What is your name?")
review = gr.Radio(label="How satisfied are you with using gradio?", choices=[1, 2, 3, 4, 5])
comments = gr.Textbox(label="Comments", lines=10, placeholder="Do you have any feedback on gradio?")
submit = gr.Button(value="Submit Feedback")
with gr.Column():
gr.FileExplorer(label="Working directory")
gr.FileExplorer(root="./data", label="Persistent storage")
with gr.Column():
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
def respond(message, chat_history):
bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
chat_history.append((message, bot_message))
time.sleep(2)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
with gr.Column():
submitsave = gr.Button(value="Save")
def backup_db2():
shutil.copyfile(DB_FILE, "./data/reviews.db")
db = sqlite3.connect(DB_FILE)
reviews = db.execute("SELECT * FROM reviews").fetchall()
pd.DataFrame(reviews).to_csv("./data/reviews.csv", index=False)
print("updating db")
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
submit.click(backup_db2)
with gr.Column():
with gr.Box():
gr.Code(
value="""def hello_world():
return "Hello, world!"
print(hello_world())""",
language="python",
interactive=True,
show_label=False,
)
gr.Markdown("Based on dataset [here](https://huggingface.co/datasets/freddyaboulton/gradio-reviews)")
data = gr.Dataframe()
count = gr.Number(label="Total number of reviews")
submit.click(add_review, [name, review, comments], [data, count])
#cssubmit.click(add_review, [name, review, comments], [data, count])
record2del = gr.Textbox(label="Id: ", lines=1, placeholder="to delete?")
submit2 = gr.Button(value="Delete Review")
id_input = gr.Number(value=202, visible=False)
submit2.click(delete_review, id_input)
submit3 = gr.Button(value="Delete All Reviews")
submit3.click(delete_all_reviews)
demo.load(load_data, None, [data, count])
def backup_db():
shutil.copyfile(DB_FILE, "./data/reviews.db")
db = sqlite3.connect(DB_FILE)
reviews = db.execute("SELECT * FROM reviews").fetchall()
pd.DataFrame(reviews).to_csv("./data/reviews.csv", index=False)
print("updating db")
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
scheduler = BackgroundScheduler()
scheduler.add_job(func=backup_db, trigger="interval", seconds=60)
scheduler.start()
demo.launch()