TuringsSolutions commited on
Commit
b2118f5
·
verified ·
1 Parent(s): 65aeece

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -1,12 +1,15 @@
1
  import gradio as gr
 
2
  from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
  # Load tokenizer and model
5
  tokenizer = AutoTokenizer.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
6
  model = AutoModelForCausalLM.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
 
 
7
 
8
  def predict(prompt, temperature, max_tokens):
9
- inputs = tokenizer(prompt, return_tensors="pt")
10
  outputs = model.generate(
11
  **inputs,
12
  max_new_tokens=max_tokens,
 
1
  import gradio as gr
2
+ import torch
3
  from transformers import AutoTokenizer, AutoModelForCausalLM
4
 
5
  # Load tokenizer and model
6
  tokenizer = AutoTokenizer.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
7
  model = AutoModelForCausalLM.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
8
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9
+ model.to(device)
10
 
11
  def predict(prompt, temperature, max_tokens):
12
+ inputs = tokenizer(prompt, return_tensors="pt").to(device)
13
  outputs = model.generate(
14
  **inputs,
15
  max_new_tokens=max_tokens,