TuringsSolutions
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
# Load tokenizer and model
|
5 |
tokenizer = AutoTokenizer.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
|
6 |
model = AutoModelForCausalLM.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
|
|
|
|
|
7 |
|
8 |
def predict(prompt, temperature, max_tokens):
|
9 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
10 |
outputs = model.generate(
|
11 |
**inputs,
|
12 |
max_new_tokens=max_tokens,
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
# Load tokenizer and model
|
6 |
tokenizer = AutoTokenizer.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
|
7 |
model = AutoModelForCausalLM.from_pretrained("TuringsSolutions/Gemma2LegalEdition", trust_remote_code=True)
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model.to(device)
|
10 |
|
11 |
def predict(prompt, temperature, max_tokens):
|
12 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
13 |
outputs = model.generate(
|
14 |
**inputs,
|
15 |
max_new_tokens=max_tokens,
|