Cletrason's picture
Upload 7 files
adbb9b1
import os
import PIL.Image
import numpy as np
import torch
import torchvision
from torchvision.transforms import Resize, InterpolationMode
import imageio
from einops import rearrange
import cv2
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.openpose import OpenposeDetector
import decord
# decord.bridge.set_bridge('torch')
apply_canny = CannyDetector()
apply_openpose = OpenposeDetector()
def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5):
'''
Creates a watermark on the saved inference image.
We request that you do not remove this to properly assign credit to
Shi-Lab's work.
'''
watermark = Image.open(watermark_path)
w_0, h_0 = watermark.size
H, W, _ = image.shape
wmsize = int(max(H, W) * wm_rel_size)
aspect = h_0 / w_0
if aspect > 1.0:
watermark = watermark.resize((wmsize, int(aspect * wmsize)), Image.LANCZOS)
else:
watermark = watermark.resize((int(wmsize / aspect), wmsize), Image.LANCZOS)
w, h = watermark.size
loc_h = H - h - boundary
loc_w = W - w - boundary
image = Image.fromarray(image)
mask = watermark if watermark.mode in ('RGBA', 'LA') else None
image.paste(watermark, (loc_w, loc_h), mask)
return image
def pre_process_canny(input_video, low_threshold=100, high_threshold=200):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def pre_process_pose(input_video, apply_pose_detect: bool = True):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
img = HWC3(img)
if apply_pose_detect:
detected_map, _ = apply_openpose(img)
else:
detected_map = img
detected_map = HWC3(detected_map)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def create_video(frames, fps, rescale=False, path=None, watermark=None):
if path is None:
dir = "temporal"
os.makedirs(dir, exist_ok=True)
path = os.path.join(dir, 'movie.mp4')
outputs = []
for i, x in enumerate(frames):
x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
if watermark is not None:
x = add_watermark(x, watermark)
outputs.append(x)
# imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)
imageio.mimsave(path, outputs, fps=fps)
return path
def create_gif(frames, fps, rescale=False, path=None, watermark=None):
if path is None:
dir = "temporal"
os.makedirs(dir, exist_ok=True)
path = os.path.join(dir, 'canny_db.gif')
outputs = []
for i, x in enumerate(frames):
x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
if watermark is not None:
x = add_watermark(x, watermark)
outputs.append(x)
# imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)
imageio.mimsave(path, outputs, fps=fps)
return path
def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
vr = decord.VideoReader(video_path)
initial_fps = vr.get_avg_fps()
if output_fps == -1:
output_fps = int(initial_fps)
if end_t == -1:
end_t = len(vr) / initial_fps
else:
end_t = min(len(vr) / initial_fps, end_t)
assert 0 <= start_t < end_t
assert output_fps > 0
start_f_ind = int(start_t * initial_fps)
end_f_ind = int(end_t * initial_fps)
num_f = int((end_t - start_t) * output_fps)
sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
video = vr.get_batch(sample_idx)
if torch.is_tensor(video):
video = video.detach().cpu().numpy()
else:
video = video.asnumpy()
_, h, w, _ = video.shape
video = rearrange(video, "f h w c -> f c h w")
video = torch.Tensor(video).to(device).to(dtype)
if h > w:
w = int(w * resolution / h)
w = w - w % 8
h = resolution - resolution % 8
else:
h = int(h * resolution / w)
h = h - h % 8
w = resolution - resolution % 8
video = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(video)
if normalize:
video = video / 127.5 - 1.0
return video, output_fps
def post_process_gif(list_of_results, image_resolution):
output_file = "/tmp/ddxk.gif"
imageio.mimsave(output_file, list_of_results, fps=4)
return output_file
class CrossFrameAttnProcessor:
def __init__(self, unet_chunk_size=2):
self.unet_chunk_size = unet_chunk_size
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.cross_attention_norm:
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# Sparse Attention
if not is_cross_attention:
video_length = key.size()[0] // self.unet_chunk_size
# former_frame_index = torch.arange(video_length) - 1
# former_frame_index[0] = 0
former_frame_index = [0] * video_length
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key = key[:, former_frame_index]
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value = value[:, former_frame_index]
value = rearrange(value, "b f d c -> (b f) d c")
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states