import cv2 | |
import numpy as np | |
np.random.seed(0) | |
class GaussianBlur(object): | |
# Implements Gaussian blur as described in the SimCLR paper | |
def __init__(self, kernel_size, min=0.1, max=2.0): | |
self.min = min | |
self.max = max | |
# kernel size is set to be 10% of the image height/width | |
self.kernel_size = kernel_size | |
def __call__(self, sample): | |
sample = np.array(sample) | |
# blur the image with a 50% chance | |
prob = np.random.random_sample() | |
if prob < 0.5: | |
# print(self.kernel_size) | |
sigma = (self.max - self.min) * np.random.random_sample() + self.min | |
sample = cv2.GaussianBlur(sample, (self.kernel_size, self.kernel_size), sigma) | |
return sample | |