File size: 8,633 Bytes
d60982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from PIL import Image
from matplotlib.pyplot import imshow, show
import matplotlib.pyplot as plt
from torchvision import models, transforms
from torch.autograd import Variable
from torch.nn import functional as F
import torch
import torch.nn as nn
from torch import topk
import numpy as np
import os
import skimage.transform
import cv2
import math
import openslide
import argparse
import pickle

def show_cam_on_image(img, mask):
    heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
    heatmap = np.float32(heatmap) / 255
    cam = heatmap + np.float32(img)
    cam = cam / np.max(cam)
    return cam

def cam_to_mask(gray, patches, cam_matrix, w, h, w_s, h_s):
   mask = np.full_like(gray, 0.).astype(np.float32)
   for ind1, patch in enumerate(patches):
      x, y = patch.split('.')[0].split('_')
      x, y = int(x), int(y)
      #if y <5 or x>w-5 or y>h-5:
      #   continue
      mask[int(y*h_s):int((y+1)*h_s), int(x*w_s):int((x+1)*w_s)].fill(cam_matrix[ind1][0])

   return mask

def main(args):
   label_map = pickle.load(open(os.path.join(args.dataset_metadata_path, 'label_map.pkl'), 'rb'))

   label_name_from_id = dict()
   for label_name, label_id in label_map.items():
      label_name_from_id[label_id] = label_name

   n_class = len(label_map)#args.n_class   
   file_name, label = open(args.path_file, 'r').readlines()[-1].split('\t')
   label = label.rstrip().strip()
   #site, file_name = file_name.split('/')
   file_path = os.path.join(args.path_patches, '{}_files/20.0/'.format(file_name))
   print(file_name)
   print(label)

   p = torch.load('graphcam/prob.pt').cpu().detach().numpy()[0]
   file_path = os.path.join(args.path_patches, '{}_files/20.0/'.format(file_name))
   #ori = openslide.OpenSlide(os.path.join(args.path_WSI, '{}.svs').format(file_name))
   ORIGINAL_FILEPATH = os.path.join(args.path_WSI,'TCGA',label, '{}.svs'.format(file_name))
   print('L', ORIGINAL_FILEPATH)
   ori = openslide.OpenSlide(ORIGINAL_FILEPATH)
   patch_info = open(os.path.join(args.path_graph, file_name, 'c_idx.txt'), 'r')

   width, height = ori.dimensions

   REDUCTION_FACTOR = 10
   w, h = int(width/512), int(height/512)
   w_r, h_r = int(width/20), int(height/20)
   resized_img = ori.get_thumbnail((width,height))#ori.get_thumbnail((w_r,h_r))
   resized_img = resized_img.resize((w_r,h_r))
   ratio_w, ratio_h = width/resized_img.width, height/resized_img.height
   print('ratios ', ratio_w, ratio_h)
   w_s, h_s = float(512/REDUCTION_FACTOR), float(512/REDUCTION_FACTOR)
   print(w_s, h_s)

   patch_info = patch_info.readlines()
   patches = []
   xmax, ymax = 0, 0
   for patch in patch_info:
      x, y = patch.strip('\n').split('\t')
      if xmax < int(x): xmax = int(x)
      if ymax < int(y): ymax = int(y)
      patches.append('{}_{}.jpeg'.format(x,y))

   output_img = np.asarray(resized_img)[:,:,::-1].copy()
   #-----------------------------------------------------------------------------------------------------#
   # GraphCAM
   print('visulize GraphCAM')
   assign_matrix = torch.load('graphcam/s_matrix_ori.pt')
   m = nn.Softmax(dim=1)
   assign_matrix = m(assign_matrix)

   # Thresholding for better visualization
   p = np.clip(p, 0.4, 1)



   output_img_copy =np.copy(output_img)
   gray = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
   image_transformer_attribution = (output_img_copy - output_img_copy.min()) / (output_img_copy.max() - output_img_copy.min())
   cam_matrices = []
   masks = []
   visualizations = []
   print(len(patches))
   os.makedirs('graphcam_vis', exist_ok=True)
   for class_i in range(n_class):

         # Load graphcam for each class
         cam_matrix = torch.load(f'graphcam/cam_{class_i}.pt')
         print(cam_matrix.shape)
         cam_matrix = torch.mm(assign_matrix, cam_matrix.transpose(1,0))
         cam_matrix = cam_matrix.cpu()
         print(assign_matrix.shape)
         print(cam_matrix.shape)
         # Normalize the graphcam
         cam_matrix = (cam_matrix - cam_matrix.min()) / (cam_matrix.max() - cam_matrix.min())
         cam_matrix = cam_matrix.detach().numpy()
         cam_matrix = p[class_i] * cam_matrix
         cam_matrix = np.clip(cam_matrix, 0, 1)      
         print(cam_matrix.shape)
         #print()
         

         mask = cam_to_mask(gray, patches, cam_matrix, w, h, w_s, h_s)
         print('mask shape ', mask.shape)
         print('imgtf attr ', image_transformer_attribution.shape)
         vis = show_cam_on_image(image_transformer_attribution, mask)
         vis =  np.uint8(255 * vis)

         cam_matrices.append(cam_matrix)
         masks.append(mask)
         visualizations.append(vis)
         print()
         cv2.imwrite('graphcam_vis/{}_all_types_cam_{}.png'.format(file_name, label_name_from_id[class_i] ), vis)
   h, w, _ = output_img.shape
   if h > w:
      vis_merge = cv2.hconcat([output_img] + visualizations)
   else:
      vis_merge = cv2.vconcat([output_img] + visualizations)


   cv2.imwrite('graphcam_vis/{}_all_types_cam_all.png'.format(file_name), vis_merge)
   cv2.imwrite('graphcam_vis/{}_all_types_ori.png'.format(file_name ), output_img)

   '''   
   # Load graphcam for differnet class
   cam_matrix_0 = torch.load('graphcam/cam_0.pt')
   cam_matrix_0 = torch.mm(assign_matrix, cam_matrix_0.transpose(1,0))
   cam_matrix_0 = cam_matrix_0.cpu()
   cam_matrix_1 = torch.load('graphcam/cam_1.pt')
   cam_matrix_1 = torch.mm(assign_matrix, cam_matrix_1.transpose(1,0))
   cam_matrix_1 = cam_matrix_1.cpu()
   cam_matrix_2 = torch.load('graphcam/cam_2.pt')
   cam_matrix_2 = torch.mm(assign_matrix, cam_matrix_2.transpose(1,0))
   cam_matrix_2 = cam_matrix_2.cpu()

   # Normalize the graphcam
   cam_matrix_0 = (cam_matrix_0 - cam_matrix_0.min()) / (cam_matrix_0.max() - cam_matrix_0.min())
   cam_matrix_0 = cam_matrix_0.detach().numpy()
   cam_matrix_0 = p[0] * cam_matrix_0
   cam_matrix_0 = np.clip(cam_matrix_0, 0, 1)
   cam_matrix_1 = (cam_matrix_1 - cam_matrix_1.min()) / (cam_matrix_1.max() - cam_matrix_1.min())
   cam_matrix_1 = cam_matrix_1.detach().numpy()
   cam_matrix_1 = p[1] * cam_matrix_1
   cam_matrix_1 = np.clip(cam_matrix_1, 0, 1)
   cam_matrix_2 = (cam_matrix_2 - cam_matrix_2.min()) / (cam_matrix_2.max() - cam_matrix_2.min())
   cam_matrix_2 = cam_matrix_2.detach().numpy()
   cam_matrix_2 = p[2] * cam_matrix_2
   cam_matrix_2 = np.clip(cam_matrix_2, 0, 1)

   output_img_copy =np.copy(output_img)

   gray = cv2.cvtColor(output_img, cv2.COLOR_BGR2GRAY)
   image_transformer_attribution = (output_img_copy - output_img_copy.min()) / (output_img_copy.max() - output_img_copy.min())

   mask0 = cam_to_mask(gray, patches, cam_matrix_0, w, h, w_s, h_s)
   vis0 = show_cam_on_image(image_transformer_attribution, mask0)
   vis0 =  np.uint8(255 * vis0) 
   mask1 = cam_to_mask(gray, patches, cam_matrix_1, w, h, w_s, h_s)
   vis1 = show_cam_on_image(image_transformer_attribution, mask1)
   vis1 =  np.uint8(255 * vis1)
   mask2 = cam_to_mask(gray, patches, cam_matrix_2, w, h, w_s, h_s)
   vis2 = show_cam_on_image(image_transformer_attribution, mask2)
   vis2 =  np.uint8(255 * vis2)
   
   ##########################################
   h, w, _ = output_img.shape
   if h > w:
      vis_merge = cv2.hconcat([output_img, vis0, vis1, vis2])
   else:
      vis_merge = cv2.vconcat([output_img, vis0, vis1, vis2])

   #cv2.imwrite('graphcam_vis/{}_{}_all_types_cam_all.png'.format(file_name, site), vis_merge)

   #cv2.imwrite('graphcam_vis/{}_{}_all_types_ori.png'.format(file_name, site), output_img)
   #cv2.imwrite('graphcam_vis/{}_{}_all_types_cam_luad.png'.format(file_name, site), vis1)
   #cv2.imwrite('graphcam_vis/{}_{}_all_types_cam_lscc.png'.format(file_name, site), vis2)
   cv2.imwrite('graphcam_vis/{}_all_types_cam_all.png'.format(file_name, ), vis_merge)

   cv2.imwrite('graphcam_vis/{}_all_types_ori.png'.format(file_name ), output_img)
   cv2.imwrite('graphcam_vis/{}_all_types_cam_luad.png'.format(file_name ), vis1)
   cv2.imwrite('graphcam_vis/{}_all_types_cam_lscc.png'.format(file_name ), vis2)

   '''

if __name__ == "__main__":
   parser = argparse.ArgumentParser(description='GraphCAM')
   parser.add_argument('--path_file', type=str, default='test.txt', help='txt file contains test sample')
   parser.add_argument('--path_patches', type=str, default='', help='')
   parser.add_argument('--path_WSI', type=str, default='', help='')
   parser.add_argument('--path_graph', type=str, default='', help='')
   parser.add_argument('--dataset_metadata_path', type=str, help='Location of the metadata associated with the created dataset: label mapping, splits and so on')   
   args = parser.parse_args()
   main(args)