File size: 9,953 Bytes
d60982d
 
 
 
 
7826581
29a517e
06b65b5
8a89a15
 
29a517e
8a89a15
 
d60982d
9b08ae2
 
 
 
 
 
 
 
 
 
 
 
ad1b20c
 
06b65b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a89a15
06b65b5
 
 
ad1b20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a89a15
ad1b20c
 
 
 
 
 
 
 
06b65b5
ad1b20c
06b65b5
ad1b20c
06b65b5
ad1b20c
06b65b5
 
 
ad1b20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b65b5
ad1b20c
cd94e60
06b65b5
 
ad1b20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd94e60
 
 
 
ad1b20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd94e60
ad1b20c
 
 
cd94e60
 
 
 
ad1b20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b08ae2
 
 
ad1b20c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import streamlit as st
import openslide
import os
from streamlit_option_menu import option_menu
import torch
import requests

st.set_page_config(page_title="",layout='wide')
@st.cache(suppress_st_warning=True)
def load_model():
    from predict import Predictor
    predictor = Predictor()
    return predictor

@st.cache(suppress_st_warning=True)
def load_dependencies():
    if torch.cuda.is_available():
        os.system("pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.1+cu113.html")
        os.system("pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.1+cu113.html")
        os.system("pip install torch-geometric -f https://pytorch-geometric.com/whl/torch-1.7.1+cu113.html")    
    else:
        os.system("pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.1+cpu.html")
        os.system("pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.1+cpu.html")
        os.system("pip install torch-geometric -f https://pytorch-geometric.com/whl/torch-1.7.1+cpu.html")


def main():

        # environment variables for the inference api
        os.environ['DATA_DIR'] = 'queries'
        os.environ['PATCHES_DIR'] =  os.path.join(os.environ['DATA_DIR'], 'patches')
        os.environ['SLIDES_DIR'] = os.path.join(os.environ['DATA_DIR'], 'slides')
        os.environ['GRAPHCAM_DIR'] = os.path.join(os.environ['DATA_DIR'], 'graphcam_plots')
        os.makedirs(os.environ['GRAPHCAM_DIR'], exist_ok=True)


        # manually put the metadata in the metadata folder
        os.environ['CLASS_METADATA'] ='metadata/label_map.pkl'

        # manually put the desired weights in the weights folder
        os.environ['WEIGHTS_PATH'] = WEIGHTS_PATH='weights'
        os.environ['FEATURE_EXTRACTOR_WEIGHT_PATH'] = os.path.join(os.environ['WEIGHTS_PATH'], 'feature_extractor', 'model.pth')
        os.environ['GT_WEIGHT_PATH']  = os.path.join(os.environ['WEIGHTS_PATH'], 'graph_transformer', 'GraphCAM.pth')


        
        from predict import Predictor





        # environment variables for the inference api
        os.environ['DATA_DIR'] = 'queries'
        os.environ['PATCHES_DIR'] =  os.path.join(os.environ['DATA_DIR'], 'patches')
        os.environ['SLIDES_DIR'] = os.path.join(os.environ['DATA_DIR'], 'slides')
        os.environ['GRAPHCAM_DIR'] = os.path.join(os.environ['DATA_DIR'], 'graphcam_plots')
        os.makedirs(os.environ['GRAPHCAM_DIR'], exist_ok=True)


        # manually put the metadata in the metadata folder
        os.environ['CLASS_METADATA'] ='metadata/label_map.pkl'

        # manually put the desired weights in the weights folder
        os.environ['WEIGHTS_PATH'] = WEIGHTS_PATH='weights'
        os.environ['FEATURE_EXTRACTOR_WEIGHT_PATH'] = os.path.join(os.environ['WEIGHTS_PATH'], 'feature_extractor', 'model.pth')
        os.environ['GT_WEIGHT_PATH']  = os.path.join(os.environ['WEIGHTS_PATH'], 'graph_transformer', 'GraphCAM.pth')


        predictor = load_model()#Predictor()





        ABOUT_TEXT = "🤗 LastMinute Medical - Web diagnosis tool."
        CONTACT_TEXT = """
        _Built by Christian Cancedda and LabLab lads with love_ ❤️ 

        [![Follow](https://img.shields.io/github/followers/Chris1nexus?style=social)](https://github.com/Chris1nexus)

        [![Follow](https://img.shields.io/twitter/follow/chris_cancedda?style=social)](https://twitter.com/intent/follow?screen_name=chris_cancedda)

        Star project repository:

        [![GitHub stars](https://img.shields.io/github/stars/Chris1nexus/inference-graph-transformer?style=social)](https://github.com/Chris1nexus/inference-graph-transformer)

        """
        VISUALIZE_TEXT = "Visualize WSI slide by uploading it on the provided window"
        DETECT_TEXT = "Generate a preliminary diagnosis about the presence of  pulmonary disease"



        with st.sidebar:
            choice = option_menu("LastMinute - Diagnosis",
                                 ["About", "Visualize WSI slide", "Cancer Detection", "Contact"],
                                 icons=['house', 'upload', 'activity',  'person lines fill'],
                                 menu_icon="app-indicator", default_index=0,
                                 styles={
                                     # "container": {"padding": "5!important", "background-color": "#fafafa", },
                                     "container": {"border-radius": ".0rem"},
                                     # "icon": {"color": "orange", "font-size": "25px"},
                                     # "nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px",
                                     #              "--hover-color": "#eee"},
                                     # "nav-link-selected": {"background-color": "#02ab21"},
                                 }
                                 )
        st.sidebar.markdown(
            """
        <style>
        .aligncenter {
            text-align: center;
        }
        </style>
        <p style='text-align: center'>
            <a href="https://github.com/Chris1nexus/inference-graph-transformer" target="_blank">Project Repository</a>
        </p>


        <p class="aligncenter">
            <a href="https://github.com/Chris1nexus/inference-graph-transformer" target="_blank"> 
                <img src="https://img.shields.io/github/stars/Chris1nexus/inference-graph-transformer?style=social"/>
            </a>
        </p>

        <p class="aligncenter">
            <a href="https://twitter.com/chris_cancedda" target="_blank"> 
                <img src="https://img.shields.io/twitter/follow/chris_cancedda?style=social"/>
            </a>
        </p>
            """,
            unsafe_allow_html=True,
        )


        if choice == "About":
            st.title(choice)
            README = requests.get("https://raw.githubusercontent.com/Chris1nexus/inference-graph-transformer/master/README.md").text
            README = str(README).replace('width="1200"','width="700"')
            # st.title(choose)
            st.markdown(README, unsafe_allow_html=True)

        if choice == "Visualize WSI slide":
            st.title(choice)
            st.markdown(VISUALIZE_TEXT)

            uploaded_file = st.file_uploader("Choose a WSI slide file to diagnose (.svs)")
            if uploaded_file is not None:
                ori = openslide.OpenSlide(uploaded_file.name)
                width, height = ori.dimensions

                REDUCTION_FACTOR = 20
                w, h = int(width/512), int(height/512)
                w_r, h_r = int(width/20), int(height/20)
                resized_img = ori.get_thumbnail((w_r,h_r))
                resized_img = resized_img.resize((w_r,h_r))
                ratio_w, ratio_h = width/resized_img.width, height/resized_img.height
                #print('ratios ', ratio_w, ratio_h)
                w_s, h_s = float(512/REDUCTION_FACTOR), float(512/REDUCTION_FACTOR)   
                st.image(resized_img, use_column_width='never')   

        if choice == "Cancer Detection":
            state = dict()

            st.title(choice)
            st.markdown(DETECT_TEXT)
            uploaded_file = st.file_uploader("Choose a WSI slide file to diagnose (.svs)")
            st.markdown("Examples can be chosen at the [GDC Data repository](https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22bronchus%20and%20lung%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LUAD%22%2C%22TCGA-LUSC%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22Tissue%20Slide%22%5D%7D%7D%5D%7D)")
            st.markdown("Alternatively, for simplicity few test cases are provided at the [drive link](https://drive.google.com/drive/folders/1u3SQa2dytZBHHh6eXTlMKY-pZGZ-pwkk?usp=share_link)")


            if uploaded_file is not None:
                # To read file as bytes:
                #print(uploaded_file)
                with open(os.path.join(uploaded_file.name),"wb") as f:
                     f.write(uploaded_file.getbuffer())
                with st.spinner(text="Computation is running"):
                    predicted_class, viz_dict = predictor.predict(uploaded_file.name)
                st.info('Computation completed.')
                st.header(f'Predicted to be: {predicted_class}')
                st.text('Heatmap of the areas that show markers correlated with the disease.\nIncreasing red tones represent higher likelihood that the area is affected')
                state['cur'] = predicted_class
                mapper = {'ORI': predicted_class, predicted_class:'ORI'}
                readable_mapper = {'ORI': 'Original',  predicted_class :'Disease heatmap' }        
                #def fn():
                #    st.image(viz_dict[mapper[state['cur']]], use_column_width='never', channels='BGR') 
                #    state['cur'] = mapper[state['cur']]
                #    return 

                #st.button(f'See {readable_mapper[mapper[state["cur"]] ]}', on_click=fn   )
                #st.image(viz_dict[state['cur']], use_column_width='never', channels='BGR') 
                st.image([viz_dict[state['cur']],viz_dict['ORI']], caption=['Original', f'{predicted_class} heatmap'] ,channels='BGR'
                    # use_column_width='never', 
                    ) 
                    

        if choice == "Contact":
            st.title(choice)
            st.markdown(CONTACT_TEXT)

if __name__ == '__main__':
    #''' 
    load_dependencies()
    #'''
    main()