File size: 16,297 Bytes
d60982d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
import math
import numpy as np
torch.set_printoptions(precision=2,threshold=float('inf'))
class AGCNBlock(nn.Module):
def __init__(self,input_dim,hidden_dim,gcn_layer=2,dropout=0.0,relu=0):
super(AGCNBlock,self).__init__()
if dropout > 0.001:
self.dropout_layer = nn.Dropout(p=dropout)
self.sort = 'sort'
self.model='agcn'
self.gcns=nn.ModuleList()
self.bn = 0
self.add_self = 1
self.normalize_embedding = 1
self.gcns.append(GCNBlock(input_dim,hidden_dim,self.bn,self.add_self,self.normalize_embedding,dropout,relu))
self.pool = 'mean'
self.tau = 1.
self.lamda = 1.
for i in range(gcn_layer-1):
if i==gcn_layer-2 and (not 1):
self.gcns.append(GCNBlock(hidden_dim,hidden_dim,self.bn,self.add_self,self.normalize_embedding,dropout,0))
else:
self.gcns.append(GCNBlock(hidden_dim,hidden_dim,self.bn,self.add_self,self.normalize_embedding,dropout,relu))
if self.model=='diffpool':
self.pool_gcns=nn.ModuleList()
tmp=input_dim
self.diffpool_k=200
for i in range(3):
self.pool_gcns.append(GCNBlock(tmp,200,0,0,0,dropout,relu))
tmp=200
self.w_a=nn.Parameter(torch.zeros(1,hidden_dim,1))
self.w_b=nn.Parameter(torch.zeros(1,hidden_dim,1))
torch.nn.init.normal_(self.w_a)
torch.nn.init.uniform_(self.w_b,-1,1)
self.pass_dim=hidden_dim
if self.pool=='mean':
self.pool=self.mean_pool
elif self.pool=='max':
self.pool=self.max_pool
elif self.pool=='sum':
self.pool=self.sum_pool
self.softmax='global'
if self.softmax=='gcn':
self.att_gcn=GCNBlock(2,1,0,0,dropout,relu)
self.khop=1
self.adj_norm='none'
self.filt_percent=0.25 #default 0.5
self.eps=1e-10
self.tau_config=1
if 1==-1.:
self.tau=nn.Parameter(torch.tensor(1),requires_grad=False)
elif 1==-2.:
self.tau_fc=nn.Linear(hidden_dim,1)
torch.nn.init.constant_(self.tau_fc.bias,1)
torch.nn.init.xavier_normal_(self.tau_fc.weight.t())
else:
self.tau=nn.Parameter(torch.tensor(self.tau))
self.lamda1=nn.Parameter(torch.tensor(self.lamda))
self.lamda2=nn.Parameter(torch.tensor(self.lamda))
self.att_norm=0
self.dnorm=0
self.dnorm_coe=1
self.att_out=0
self.single_att=0
def forward(self,X,adj,mask,is_print=False):
'''
input:
X: node input features , [batch,node_num,input_dim],dtype=float
adj: adj matrix, [batch,node_num,node_num], dtype=float
mask: mask for nodes, [batch,node_num]
outputs:
out:unormalized classification prob, [batch,hidden_dim]
H: batch of node hidden features, [batch,node_num,pass_dim]
new_adj: pooled new adj matrix, [batch, k_max, k_max]
new_mask: [batch, k_max]
'''
hidden=X
#adj = adj.float()
# print('input size:')
# print(hidden.shape)
is_print1=is_print2=is_print
if adj.shape[-1]>100:
is_print1=False
for gcn in self.gcns:
hidden=gcn(hidden,adj,mask)
# print('gcn:')
# print(hidden.shape)
# print('mask:')
# print(mask.unsqueeze(2).shape)
# print(mask.sum(dim=1))
hidden=mask.unsqueeze(2)*hidden
# print(hidden[0][0])
# print(hidden[0][-1])
if self.model=='unet':
att=torch.matmul(hidden,self.w_a).squeeze()
att=att/torch.sqrt((self.w_a.squeeze(2)**2).sum(dim=1,keepdim=True))
elif self.model=='agcn':
if self.softmax=='global' or self.softmax=='mix':
if False:
dgree_w = torch.sum(adj, dim=2) / torch.sum(adj, dim=2).max(1, keepdim=True)[0]
att_a=torch.matmul(hidden,self.w_a).squeeze()*dgree_w+(mask-1)*1e10
else:
att_a=torch.matmul(hidden,self.w_a).squeeze()+(mask-1)*1e10
# print(att_a[0][:10])
# print(att_a[0][-10:-1])
att_a_1=att_a=torch.nn.functional.softmax(att_a,dim=1)
# print(att_a[0][:10])
# print(att_a[0][-10:-1])
if self.dnorm:
scale=mask.sum(dim=1,keepdim=True)/self.dnorm_coe
att_a=scale*att_a
if self.softmax=='neibor' or self.softmax=='mix':
att_b=torch.matmul(hidden,self.w_b).squeeze()+(mask-1)*1e10
att_b_max,_=att_b.max(dim=1,keepdim=True)
if self.tau_config!=-2:
att_b=torch.exp((att_b-att_b_max)*torch.abs(self.tau))
else:
att_b=torch.exp((att_b-att_b_max)*torch.abs(self.tau_fc(self.pool(hidden,mask))))
denom=att_b.unsqueeze(2)
for _ in range(self.khop):
denom=torch.matmul(adj,denom)
denom=denom.squeeze()+self.eps
att_b=(att_b*torch.diagonal(adj,0,1,2))/denom
if self.dnorm:
if self.adj_norm=='diag':
diag_scale=mask/(torch.diagonal(adj,0,1,2)+self.eps)
elif self.adj_norm=='none':
diag_scale=adj.sum(dim=1)
att_b=att_b*diag_scale
att_b=att_b*mask
if self.softmax=='global':
att=att_a
elif self.softmax=='neibor' or self.softmax=='hardnei':
att=att_b
elif self.softmax=='mix':
att=att_a*torch.abs(self.lamda1)+att_b*torch.abs(self.lamda2)
# print('att:')
# print(att.shape)
Z=hidden
if self.model=='unet':
Z=torch.tanh(att.unsqueeze(2))*Z
elif self.model=='agcn':
if self.single_att:
Z=Z
else:
Z=att.unsqueeze(2)*Z
# print('Z shape')
# print(Z.shape)
k_max=int(math.ceil(self.filt_percent*adj.shape[-1]))
# print('k_max')
# print(k_max)
if self.model=='diffpool':
k_max=min(k_max,self.diffpool_k)
k_list=[int(math.ceil(self.filt_percent*x)) for x in mask.sum(dim=1).tolist()]
# print('k_list')
# print(k_list)
if self.model!='diffpool':
if self.sort=='sample':
att_samp = att * mask
att_samp = (att_samp/att_samp.sum(1)).detach().cpu().numpy()
top_index = ()
for i in range(att.size(0)):
top_index = (torch.LongTensor(np.random.choice(att_samp.size(1), k_max, att_samp[i])) ,)
top_index = torch.stack(top_index,1)
elif self.sort=='random_sample':
top_index = torch.LongTensor(att.size(0), k_max)*0
for i in range(att.size(0)):
top_index[i,0:k_list[i]] = torch.randperm(int(mask[i].sum().item()))[0:k_list[i]]
else: #sort
_,top_index=torch.topk(att,k_max,dim=1)
# print('top_index')
# print(top_index)
# print(len(top_index[0]))
new_mask=X.new_zeros(X.shape[0],k_max)
# print('new_mask')
# print(new_mask.shape)
visualize_tools=None
if self.model=='unet':
for i,k in enumerate(k_list):
for j in range(int(k),k_max):
top_index[i][j]=adj.shape[-1]-1
new_mask[i][j]=-1.
new_mask=new_mask+1
top_index,_=torch.sort(top_index,dim=1)
assign_m=X.new_zeros(X.shape[0],k_max,adj.shape[-1])
for i,x in enumerate(top_index):
assign_m[i]=torch.index_select(adj[i],0,x)
new_adj=X.new_zeros(X.shape[0],k_max,k_max)
H=Z.new_zeros(Z.shape[0],k_max,Z.shape[-1])
for i,x in enumerate(top_index):
new_adj[i]=torch.index_select(assign_m[i],1,x)
H[i]=torch.index_select(Z[i],0,x)
elif self.model=='agcn':
assign_m=X.new_zeros(X.shape[0],k_max,adj.shape[-1])
# print('assign_m.shape')
# print(assign_m.shape)
for i,k in enumerate(k_list):
#print('top_index[i][j]')
for j in range(int(k)):
#print(str(top_index[i][j].item())+' ', end='')
assign_m[i][j]=adj[i][top_index[i][j]]
#print(assign_m[i][j])
new_mask[i][j]=1.
assign_m=assign_m/(assign_m.sum(dim=1,keepdim=True)+self.eps)
H=torch.matmul(assign_m,Z)
# print('H')
# print(H.shape)
new_adj=torch.matmul(torch.matmul(assign_m,adj),torch.transpose(assign_m,1,2))
# print(torch.matmul(assign_m,adj).shape)
# print('new_adj:')
# print(new_adj.shape)
elif self.model=='diffpool':
hidden1=X
for gcn in self.pool_gcns:
hidden1=gcn(hidden1,adj,mask)
assign_m=X.new_ones(X.shape[0],X.shape[1],k_max)*(-100000000.)
for i,x in enumerate(hidden1):
k=min(k_list[i],k_max)
assign_m[i,:,0:k]=hidden1[i,:,0:k]
for j in range(int(k)):
new_mask[i][j]=1.
assign_m=torch.nn.functional.softmax(assign_m,dim=2)*mask.unsqueeze(2)
assign_m_t=torch.transpose(assign_m,1,2)
new_adj=torch.matmul(torch.matmul(assign_m_t,adj),assign_m)
H=torch.matmul(assign_m_t,Z)
# print('pool')
if self.att_out and self.model=='agcn':
if self.softmax=='global':
out=self.pool(att_a_1.unsqueeze(2)*hidden,mask)
elif self.softmax=='neibor':
att_b_sum=att_b.sum(dim=1,keepdim=True)
out=self.pool((att_b/(att_b_sum+self.eps)).unsqueeze(2)*hidden,mask)
else:
# print('hidden.shape')
# print(hidden.shape)
out=self.pool(hidden,mask)
# print('out shape')
# print(out.shape)
if self.adj_norm=='tanh' or self.adj_norm=='mix':
new_adj=torch.tanh(new_adj)
elif self.adj_norm=='diag' or self.adj_norm=='mix':
diag_elem=torch.pow(new_adj.sum(dim=2)+self.eps,-0.5)
diag=new_adj.new_zeros(new_adj.shape)
for i,x in enumerate(diag_elem):
diag[i]=torch.diagflat(x)
new_adj=torch.matmul(torch.matmul(diag,new_adj),diag)
visualize_tools=[]
'''
if (not self.training) and is_print1:
print('**********************************')
print('node_feat:',X.type(),X.shape)
print(X)
if self.model!='diffpool':
print('**********************************')
print('att:',att.type(),att.shape)
print(att)
print('**********************************')
print('top_index:',top_index.type(),top_index.shape)
print(top_index)
print('**********************************')
print('adj:',adj.type(),adj.shape)
print(adj)
print('**********************************')
print('assign_m:',assign_m.type(),assign_m.shape)
print(assign_m)
print('**********************************')
print('new_adj:',new_adj.type(),new_adj.shape)
print(new_adj)
print('**********************************')
print('new_mask:',new_mask.type(),new_mask.shape)
print(new_mask)
'''
#visualization
from os import path
if not path.exists('att_1.pt'):
torch.save(att[0], 'att_1.pt')
torch.save(top_index[0], 'att_ind1.pt')
elif not path.exists('att_2.pt'):
torch.save(att[0], 'att_2.pt')
torch.save(top_index[0], 'att_ind2.pt')
else:
torch.save(att[0], 'att_3.pt')
torch.save(top_index[0], 'att_ind3.pt')
if (not self.training) and is_print2:
if self.model!='diffpool':
visualize_tools.append(att[0])
visualize_tools.append(top_index[0])
visualize_tools.append(new_adj[0])
visualize_tools.append(new_mask.sum())
# print('**********************************')
return out,H,new_adj,new_mask,visualize_tools
def mean_pool(self,x,mask):
return x.sum(dim=1)/(self.eps+mask.sum(dim=1,keepdim=True))
def sum_pool(self,x,mask):
return x.sum(dim=1)
@staticmethod
def max_pool(x,mask):
#output: [batch,x.shape[2]]
m=(mask-1)*1e10
r,_=(x+m.unsqueeze(2)).max(dim=1)
return r
# GCN basic operation
class GCNBlock(nn.Module):
def __init__(self, input_dim, output_dim, bn=0,add_self=0, normalize_embedding=0,
dropout=0.0,relu=0, bias=True):
super(GCNBlock,self).__init__()
self.add_self = add_self
self.dropout = dropout
self.relu=relu
self.bn=bn
if dropout > 0.001:
self.dropout_layer = nn.Dropout(p=dropout)
if self.bn:
self.bn_layer = torch.nn.BatchNorm1d(output_dim)
self.normalize_embedding = normalize_embedding
self.input_dim = input_dim
self.output_dim = output_dim
self.weight = nn.Parameter(torch.FloatTensor(input_dim, output_dim).to( 'cuda' if torch.cuda.is_available() else 'cpu') )
torch.nn.init.xavier_normal_(self.weight)
if bias:
self.bias = nn.Parameter(torch.zeros(output_dim).to( 'cuda' if torch.cuda.is_available() else 'cpu') )
else:
self.bias = None
def forward(self, x, adj, mask):
y = torch.matmul(adj, x)
if self.add_self:
y += x
y = torch.matmul(y,self.weight)
if self.bias is not None:
y = y + self.bias
if self.normalize_embedding:
y = F.normalize(y, p=2, dim=2)
if self.bn:
index=mask.sum(dim=1).long().tolist()
bn_tensor_bf=mask.new_zeros((sum(index),y.shape[2]))
bn_tensor_af=mask.new_zeros(*y.shape)
start_index=[]
ssum=0
for i in range(x.shape[0]):
start_index.append(ssum)
ssum+=index[i]
start_index.append(ssum)
for i in range(x.shape[0]):
bn_tensor_bf[start_index[i]:start_index[i+1]]=y[i,0:index[i]]
bn_tensor_bf=self.bn_layer(bn_tensor_bf)
for i in range(x.shape[0]):
bn_tensor_af[i,0:index[i]]=bn_tensor_bf[start_index[i]:start_index[i+1]]
y=bn_tensor_af
if self.dropout > 0.001:
y = self.dropout_layer(y)
if self.relu=='relu':
y=torch.nn.functional.relu(y)
print('hahah')
elif self.relu=='lrelu':
y=torch.nn.functional.leaky_relu(y,0.1)
return y
#experimental function, untested
class masked_batchnorm(nn.Module):
def __init__(self,feat_dim,epsilon=1e-10):
super().__init__()
self.alpha=nn.Parameter(torch.ones(feat_dim))
self.beta=nn.Parameter(torch.zeros(feat_dim))
self.eps=epsilon
def forward(self,x,mask):
'''
x: node feat, [batch,node_num,feat_dim]
mask: [batch,node_num]
'''
mask1 = mask.unsqueeze(2)
mask_sum = mask.sum()
mean = x.sum(dim=(0,1),keepdim=True)/(self.eps+mask_sum)
temp = (x - mean)**2
temp = temp*mask1
var = temp.sum(dim=(0,1),keepdim=True)/(self.eps+mask_sum)
rstd = torch.rsqrt(var+self.eps)
x=(x-mean)*rstd
return ((x*self.alpha) + self.beta)*mask1 |