File size: 14,760 Bytes
d60982d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
""" Vision Transformer (ViT) in PyTorch
"""
import torch
import torch.nn as nn
from einops import rearrange
from .layers import *
import math
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# patch models
'vit_small_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
),
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
'vit_large_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
}
def compute_rollout_attention(all_layer_matrices, start_layer=0):
# adding residual consideration
num_tokens = all_layer_matrices[0].shape[1]
batch_size = all_layer_matrices[0].shape[0]
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
# for i in range(len(all_layer_matrices))]
joint_attention = all_layer_matrices[start_layer]
for i in range(start_layer+1, len(all_layer_matrices)):
joint_attention = all_layer_matrices[i].bmm(joint_attention)
return joint_attention
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = Linear(in_features, hidden_features)
self.act = GELU()
self.fc2 = Linear(hidden_features, out_features)
self.drop = Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
def relprop(self, cam, **kwargs):
cam = self.drop.relprop(cam, **kwargs)
cam = self.fc2.relprop(cam, **kwargs)
cam = self.act.relprop(cam, **kwargs)
cam = self.fc1.relprop(cam, **kwargs)
return cam
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = head_dim ** -0.5
# A = Q*K^T
self.matmul1 = einsum('bhid,bhjd->bhij')
# attn = A*V
self.matmul2 = einsum('bhij,bhjd->bhid')
self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = Dropout(attn_drop)
self.proj = Linear(dim, dim)
self.proj_drop = Dropout(proj_drop)
self.softmax = Softmax(dim=-1)
self.attn_cam = None
self.attn = None
self.v = None
self.v_cam = None
self.attn_gradients = None
def get_attn(self):
return self.attn
def save_attn(self, attn):
self.attn = attn
def save_attn_cam(self, cam):
self.attn_cam = cam
def get_attn_cam(self):
return self.attn_cam
def get_v(self):
return self.v
def save_v(self, v):
self.v = v
def save_v_cam(self, cam):
self.v_cam = cam
def get_v_cam(self):
return self.v_cam
def save_attn_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_gradients(self):
return self.attn_gradients
def forward(self, x):
b, n, _, h = *x.shape, self.num_heads
qkv = self.qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)
self.save_v(v)
dots = self.matmul1([q, k]) * self.scale
attn = self.softmax(dots)
attn = self.attn_drop(attn)
# Get attention
if False:
from os import path
if not path.exists('att_1.pt'):
torch.save(attn, 'att_1.pt')
elif not path.exists('att_2.pt'):
torch.save(attn, 'att_2.pt')
else:
torch.save(attn, 'att_3.pt')
#comment in training
if x.requires_grad:
self.save_attn(attn)
attn.register_hook(self.save_attn_gradients)
out = self.matmul2([attn, v])
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.proj(out)
out = self.proj_drop(out)
return out
def relprop(self, cam, **kwargs):
cam = self.proj_drop.relprop(cam, **kwargs)
cam = self.proj.relprop(cam, **kwargs)
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads)
# attn = A*V
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs)
cam1 /= 2
cam_v /= 2
self.save_v_cam(cam_v)
self.save_attn_cam(cam1)
cam1 = self.attn_drop.relprop(cam1, **kwargs)
cam1 = self.softmax.relprop(cam1, **kwargs)
# A = Q*K^T
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
cam_q /= 2
cam_k /= 2
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads)
return self.qkv.relprop(cam_qkv, **kwargs)
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
super().__init__()
self.norm1 = LayerNorm(dim, eps=1e-6)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.norm2 = LayerNorm(dim, eps=1e-6)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)
self.add1 = Add()
self.add2 = Add()
self.clone1 = Clone()
self.clone2 = Clone()
def forward(self, x):
x1, x2 = self.clone1(x, 2)
x = self.add1([x1, self.attn(self.norm1(x2))])
x1, x2 = self.clone2(x, 2)
x = self.add2([x1, self.mlp(self.norm2(x2))])
return x
def relprop(self, cam, **kwargs):
(cam1, cam2) = self.add2.relprop(cam, **kwargs)
cam2 = self.mlp.relprop(cam2, **kwargs)
cam2 = self.norm2.relprop(cam2, **kwargs)
cam = self.clone2.relprop((cam1, cam2), **kwargs)
(cam1, cam2) = self.add1.relprop(cam, **kwargs)
cam2 = self.attn.relprop(cam2, **kwargs)
cam2 = self.norm1.relprop(cam2, **kwargs)
cam = self.clone1.relprop((cam1, cam2), **kwargs)
return cam
class VisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, num_classes=2, embed_dim=64, depth=3,
num_heads=8, mlp_ratio=2., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate)
for i in range(depth)])
self.norm = LayerNorm(embed_dim)
if mlp_head:
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
else:
# with a single Linear layer as head, the param count within rounding of paper
self.head = Linear(embed_dim, num_classes)
#self.apply(self._init_weights)
self.pool = IndexSelect()
self.add = Add()
self.inp_grad = None
def save_inp_grad(self,grad):
self.inp_grad = grad
def get_inp_grad(self):
return self.inp_grad
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@property
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def forward(self, x):
if x.requires_grad:
x.register_hook(self.save_inp_grad) #comment it in train
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
x = x.squeeze(1)
x = self.head(x)
return x
def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs):
# print(kwargs)
# print("conservation 1", cam.sum())
cam = self.head.relprop(cam, **kwargs)
cam = cam.unsqueeze(1)
cam = self.pool.relprop(cam, **kwargs)
cam = self.norm.relprop(cam, **kwargs)
for blk in reversed(self.blocks):
cam = blk.relprop(cam, **kwargs)
# print("conservation 2", cam.sum())
# print("min", cam.min())
if method == "full":
(cam, _) = self.add.relprop(cam, **kwargs)
cam = cam[:, 1:]
cam = self.patch_embed.relprop(cam, **kwargs)
# sum on channels
cam = cam.sum(dim=1)
return cam
elif method == "rollout":
# cam rollout
attn_cams = []
for blk in self.blocks:
attn_heads = blk.attn.get_attn_cam().clamp(min=0)
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
attn_cams.append(avg_heads)
cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
cam = cam[:, 0, 1:]
return cam
# our method, method name grad is legacy
elif method == "transformer_attribution" or method == "grad":
cams = []
for blk in self.blocks:
grad = blk.attn.get_attn_gradients()
cam = blk.attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cams.append(cam.unsqueeze(0))
rollout = compute_rollout_attention(cams, start_layer=start_layer)
cam = rollout[:, 0, 1:]
return cam
elif method == "last_layer":
cam = self.blocks[-1].attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
if is_ablation:
grad = self.blocks[-1].attn.get_attn_gradients()
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
elif method == "last_layer_attn":
cam = self.blocks[-1].attn.get_attn()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam
elif method == "second_layer":
cam = self.blocks[1].attn.get_attn_cam()
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
if is_ablation:
grad = self.blocks[1].attn.get_attn_gradients()
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.clamp(min=0).mean(dim=0)
cam = cam[0, 1:]
return cam |