File size: 14,760 Bytes
d60982d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
""" Vision Transformer (ViT) in PyTorch
"""
import torch
import torch.nn as nn
from einops import rearrange
from .layers import *
import math


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor

def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)

def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'first_conv': 'patch_embed.proj', 'classifier': 'head',
        **kwargs
    }


default_cfgs = {
    # patch models
    'vit_small_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
    ),
    'vit_base_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
    ),
    'vit_large_patch16_224': _cfg(
        url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
        mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
}

def compute_rollout_attention(all_layer_matrices, start_layer=0):
    # adding residual consideration
    num_tokens = all_layer_matrices[0].shape[1]
    batch_size = all_layer_matrices[0].shape[0]
    eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device)
    all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))]
    # all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True)
    #                       for i in range(len(all_layer_matrices))]
    joint_attention = all_layer_matrices[start_layer]
    for i in range(start_layer+1, len(all_layer_matrices)):
        joint_attention = all_layer_matrices[i].bmm(joint_attention)
    return joint_attention

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = Linear(in_features, hidden_features)
        self.act = GELU()
        self.fc2 = Linear(hidden_features, out_features)
        self.drop = Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

    def relprop(self, cam, **kwargs):
        cam = self.drop.relprop(cam, **kwargs)
        cam = self.fc2.relprop(cam, **kwargs)
        cam = self.act.relprop(cam, **kwargs)
        cam = self.fc1.relprop(cam, **kwargs)
        return cam


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = head_dim ** -0.5

        # A = Q*K^T
        self.matmul1 = einsum('bhid,bhjd->bhij')
        # attn = A*V
        self.matmul2 = einsum('bhij,bhjd->bhid')

        self.qkv = Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = Dropout(attn_drop)
        self.proj = Linear(dim, dim)
        self.proj_drop = Dropout(proj_drop)
        self.softmax = Softmax(dim=-1)

        self.attn_cam = None
        self.attn = None
        self.v = None
        self.v_cam = None
        self.attn_gradients = None

    def get_attn(self):
        return self.attn

    def save_attn(self, attn):
        self.attn = attn

    def save_attn_cam(self, cam):
        self.attn_cam = cam

    def get_attn_cam(self):
        return self.attn_cam

    def get_v(self):
        return self.v

    def save_v(self, v):
        self.v = v

    def save_v_cam(self, cam):
        self.v_cam = cam

    def get_v_cam(self):
        return self.v_cam

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def forward(self, x):
        b, n, _, h = *x.shape, self.num_heads
        qkv = self.qkv(x)
        q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h)

        self.save_v(v)

        dots = self.matmul1([q, k]) * self.scale

        attn = self.softmax(dots)
        attn = self.attn_drop(attn)

        # Get attention
        if False:
            from os import path
            if not path.exists('att_1.pt'):
                torch.save(attn, 'att_1.pt')
            elif not path.exists('att_2.pt'):
                torch.save(attn, 'att_2.pt')
            else:
                torch.save(attn, 'att_3.pt')

        #comment in training
        if x.requires_grad:
            self.save_attn(attn)
            attn.register_hook(self.save_attn_gradients)

        out = self.matmul2([attn, v])
        out = rearrange(out, 'b h n d -> b n (h d)')

        out = self.proj(out)
        out = self.proj_drop(out)
        return out

    def relprop(self, cam, **kwargs):
        cam = self.proj_drop.relprop(cam, **kwargs)
        cam = self.proj.relprop(cam, **kwargs)
        cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads)

        # attn = A*V
        (cam1, cam_v)= self.matmul2.relprop(cam, **kwargs)
        cam1 /= 2
        cam_v /= 2

        self.save_v_cam(cam_v)
        self.save_attn_cam(cam1)

        cam1 = self.attn_drop.relprop(cam1, **kwargs)
        cam1 = self.softmax.relprop(cam1, **kwargs)

        # A = Q*K^T
        (cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs)
        cam_q /= 2
        cam_k /= 2

        cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads)

        return self.qkv.relprop(cam_qkv, **kwargs)


class Block(nn.Module):

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.):
        super().__init__()
        self.norm1 = LayerNorm(dim, eps=1e-6)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
        self.norm2 = LayerNorm(dim, eps=1e-6)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop)

        self.add1 = Add()
        self.add2 = Add()
        self.clone1 = Clone()
        self.clone2 = Clone()

    def forward(self, x):
        x1, x2 = self.clone1(x, 2)
        x = self.add1([x1, self.attn(self.norm1(x2))])
        x1, x2 = self.clone2(x, 2)
        x = self.add2([x1, self.mlp(self.norm2(x2))])
        return x

    def relprop(self, cam, **kwargs):
        (cam1, cam2) = self.add2.relprop(cam, **kwargs)
        cam2 = self.mlp.relprop(cam2, **kwargs)
        cam2 = self.norm2.relprop(cam2, **kwargs)
        cam = self.clone2.relprop((cam1, cam2), **kwargs)

        (cam1, cam2) = self.add1.relprop(cam, **kwargs)
        cam2 = self.attn.relprop(cam2, **kwargs)
        cam2 = self.norm1.relprop(cam2, **kwargs)
        cam = self.clone1.relprop((cam1, cam2), **kwargs)
        return cam

class VisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, num_classes=2, embed_dim=64, depth=3,
                 num_heads=8, mlp_ratio=2., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.):
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                drop=drop_rate, attn_drop=attn_drop_rate)
            for i in range(depth)])

        self.norm = LayerNorm(embed_dim)
        if mlp_head:
            # paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper
            self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes)
        else:
            # with a single Linear layer as head, the param count within rounding of paper
            self.head = Linear(embed_dim, num_classes)

        #self.apply(self._init_weights)

        self.pool = IndexSelect()
        self.add = Add()

        self.inp_grad = None

    def save_inp_grad(self,grad):
        self.inp_grad = grad

    def get_inp_grad(self):
        return self.inp_grad


    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @property
    def no_weight_decay(self):
        return {'pos_embed', 'cls_token'}

    def forward(self, x):
        if x.requires_grad:
            x.register_hook(self.save_inp_grad)     #comment it in train

        for blk in self.blocks:
            x = blk(x)

        x = self.norm(x)
        x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device))
        x = x.squeeze(1)
        x = self.head(x)
        return x

    def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs):
        # print(kwargs)
        # print("conservation 1", cam.sum())
        cam = self.head.relprop(cam, **kwargs)
        cam = cam.unsqueeze(1)
        cam = self.pool.relprop(cam, **kwargs)
        cam = self.norm.relprop(cam, **kwargs)
        for blk in reversed(self.blocks):
            cam = blk.relprop(cam, **kwargs)

        # print("conservation 2", cam.sum())
        # print("min", cam.min())

        if method == "full":
            (cam, _) = self.add.relprop(cam, **kwargs)
            cam = cam[:, 1:]
            cam = self.patch_embed.relprop(cam, **kwargs)
            # sum on channels
            cam = cam.sum(dim=1)
            return cam

        elif method == "rollout":
            # cam rollout
            attn_cams = []
            for blk in self.blocks:
                attn_heads = blk.attn.get_attn_cam().clamp(min=0)
                avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach()
                attn_cams.append(avg_heads)
            cam = compute_rollout_attention(attn_cams, start_layer=start_layer)
            cam = cam[:, 0, 1:]
            return cam
        
        # our method, method name grad is legacy
        elif method == "transformer_attribution" or method == "grad":
            cams = []
            for blk in self.blocks:
                grad = blk.attn.get_attn_gradients()
                cam = blk.attn.get_attn_cam()
                cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
                grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
                cam = grad * cam
                cam = cam.clamp(min=0).mean(dim=0)
                cams.append(cam.unsqueeze(0))
            rollout = compute_rollout_attention(cams, start_layer=start_layer)
            cam = rollout[:, 0, 1:]
            return cam
            
        elif method == "last_layer":
            cam = self.blocks[-1].attn.get_attn_cam()
            cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
            if is_ablation:
                grad = self.blocks[-1].attn.get_attn_gradients()
                grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
                cam = grad * cam
            cam = cam.clamp(min=0).mean(dim=0)
            cam = cam[0, 1:]
            return cam

        elif method == "last_layer_attn":
            cam = self.blocks[-1].attn.get_attn()
            cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
            cam = cam.clamp(min=0).mean(dim=0)
            cam = cam[0, 1:]
            return cam

        elif method == "second_layer":
            cam = self.blocks[1].attn.get_attn_cam()
            cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1])
            if is_ablation:
                grad = self.blocks[1].attn.get_attn_gradients()
                grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1])
                cam = grad * cam
            cam = cam.clamp(min=0).mean(dim=0)
            cam = cam[0, 1:]
            return cam