from zoedepth.utils.misc import colorize, save_raw_16bit import torch import gradio as gr import spaces from PIL import Image import numpy as np from functools import partial def save_raw_16bit(depth, fpath="raw.png"): if isinstance(depth, torch.Tensor): depth = depth.squeeze().cpu().numpy() assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array" assert depth.ndim == 2, "Depth must be 2D" depth = depth * 256 # scale for 16-bit png depth = depth.astype(np.uint16) return depth # Your image processing function @spaces.GPU(enable_queue=True) def process_image(model, image: Image.Image): image = image.convert("RGB") out = model.infer_pil(image) processed_array = save_raw_16bit(colorize(out)[:, :, 0]) return Image.fromarray(processed_array) def depth_interface(model, device): with gr.Row(): inputs=gr.Image(label="Input Image", type='pil') # Input is an image outputs=gr.Image(label="Depth Map", type='pil') # Output is also an image generate_btn = gr.Button(value="Generate") generate_btn.click(partial(process_image, model.to(device)), inputs=inputs, outputs=outputs, api_name="generate_depth")