SVD-XT-1.1 / app.py
CharlieAmalet's picture
For an unknown reason, the space becomes extremely slow -> rollback (#2)
7231c46 verified
raw
history blame
6.43 kB
import torch._dynamo
torch._dynamo.config.suppress_errors = True
import torch
import gradio as gr
import os
import base64
from glob import glob
from pathlib import Path
from typing import Optional
from diffusers import StableVideoDiffusionPipeline
from diffusers.utils import load_image, export_to_video
from PIL import Image
import uuid
import random
from huggingface_hub import login, hf_hub_download
import spaces
model_directory = './checkpoints'
try:
hf_hub_download(repo_id="vdo/stable-video-diffusion-img2vid-xt-1-1", filename="svd_xt_1_1.safetensors", local_dir=model_directory, cache_dir=model_directory)
except (Exception, BaseException) as error:
print(error)
# pipe = StableVideoDiffusionPipeline.from_pretrained(
# # "stabilityai/stable-video-diffusion-img2vid-xt-1-1",
# "vdo/stable-video-diffusion-img2vid-xt-1-1",
# torch_dtype=torch.float16,
# variant="fp16"
# )
# pipe.save_pretrained("./checkpoints", variant="fp16")
if not os.path.exists(model_directory):
pipe = StableVideoDiffusionPipeline.from_pretrained(
# "stabilityai/stable-video-diffusion-img2vid-xt-1-1",
"vdo/stable-video-diffusion-img2vid-xt-1-1",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.save_pretrained("./checkpoints", variant="fp16")
else:
try:
pipe = StableVideoDiffusionPipeline.from_pretrained(
model_directory,
torch_dtype=torch.float16,
variant="fp16"
)
except:
pipe = StableVideoDiffusionPipeline.from_pretrained(
# "stabilityai/stable-video-diffusion-img2vid-xt-1-1",
"vdo/stable-video-diffusion-img2vid-xt-1-1",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.save_pretrained("./checkpoints", variant="fp16")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipe.to(device)
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
#pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
max_64_bit_int = 2**63 - 1
@spaces.GPU(enable_queue=True, duration=240)
def generate_video(
image: Image,
seed: int,
motion_bucket_id: int = 127,
fps_id: int = 6,
version: str = "svd_xt",
cond_aug: float = 0.02,
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: str = "outputs",
):
global pipe
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe.to(device)
# note julian: normally we should resize input images, but normally they are already in 1024x576, so..
# also, I would like to experiment with vertical videos, and 1024x512 videos
image = resize_image(image)
if image.mode == "RGBA":
image = image.convert("RGB")
generator = torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# pipe.to("cuda")
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0]
export_to_video(frames, video_path, fps=fps_id)
torch.manual_seed(seed)
# Read the content of the video file and encode it to base64
# with open(video_path, "rb") as video_file:
# video_base64 = base64.b64encode(video_file.read()).decode('utf-8')
# Prepend the appropriate data URI header with MIME type
# video_data_uri = 'data:video/mp4;base64,' + video_base64
# clean-up (otherwise there is a risk of "ghosting", eg. someone seeing the previous generated video",
# of one of the steps go wrong)
# os.remove(video_path)
# return video_data_uri
return video_path
def resize_image(image, output_size=(1024, 576)):
# Calculate aspect ratios
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
image_aspect = image.width / image.height # Aspect ratio of the original image
# Resize then crop if the original image is larger
if image_aspect > target_aspect:
# Resize the image to match the target height, maintaining aspect ratio
new_height = output_size[1]
new_width = int(new_height * image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = (new_width - output_size[0]) / 2
top = 0
right = (new_width + output_size[0]) / 2
bottom = output_size[1]
else:
# Resize the image to match the target width, maintaining aspect ratio
new_width = output_size[0]
new_height = int(new_width / image_aspect)
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Calculate coordinates for cropping
left = 0
top = (new_height - output_size[1]) / 2
right = output_size[0]
bottom = (new_height + output_size[1]) / 2
# Crop the image
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
css = """
img, video {
max-height: 400px;
object-fit: contain;
}
video {
margin: 0 auto
}
"""
with gr.Blocks(css=css) as SVD_XT_1_1:
with gr.Row():
with gr.Column():
image = gr.Image(label="Upload your image", type="pil")
generate_btn = gr.Button("Generate")
# base64_out = gr.Textbox(label="Base64 Video")
seed = gr.Slider(label="Seed", value=42, randomize=False, minimum=0, maximum=max_64_bit_int, step=1)
motion_bucket_id = gr.Slider(label="Motion bucket id", info="Controls how much motion to add/remove from the image", value=127, minimum=1, maximum=255)
fps_id = gr.Slider(label="Frames per second", info="The length of your video in seconds will be 25/fps", value=6, minimum=5, maximum=30)
with gr.Column():
video_out = gr.Video(
autoplay=True,
# height=512,
# width=512,
# elem_id="video_output"
)
generate_btn.click(
fn=generate_video,
inputs=[image, seed, motion_bucket_id, fps_id],
outputs=video_out,
api_name="run"
)
SVD_XT_1_1.launch()