CesarLeblanc commited on
Commit
544f914
·
1 Parent(s): c8844e9
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -2,10 +2,14 @@ import gradio as gr
2
  from transformers import pipeline
3
  import requests
4
  from bs4 import BeautifulSoup
 
5
 
6
  # Initialize models
7
  classification_model = pipeline("text-classification", model="models/text_classification_model", tokenizer="models/text_classification_model", top_k=5)
8
  mask_model = pipeline("fill-mask", model="models/fill_mask_model", tokenizer="models/fill_mask_model", top_k=100)
 
 
 
9
 
10
  def return_habitat_image(habitat_label):
11
  floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
@@ -70,6 +74,8 @@ def classification(text, k):
70
  text = f"This vegetation plot belongs to the habitat {habitat_labels[0]}."
71
  else:
72
  text = f"This vegetation plot belongs to the habitats {', '.join(habitat_labels[:-1])} and {habitat_labels[-1]}."
 
 
73
  image_output = return_habitat_image(habitat_labels[0])
74
  return text, image_output
75
 
@@ -82,9 +88,7 @@ def masking(text):
82
  best_position = None
83
  best_sentence = None
84
 
85
- # Loop through each position in the sentence
86
  for i in range(len(text_split) + 1):
87
- # Create masked text
88
  masked_text = ', '.join(text_split[:i] + ['[MASK]'] + text_split[i:])
89
 
90
  j = 0
@@ -99,7 +103,6 @@ def masking(text):
99
  score = prediction['score']
100
  sentence = prediction['sequence']
101
 
102
- # Update best prediction and position if score is higher
103
  if score > max_score:
104
  max_score = score
105
  best_prediction = species
@@ -119,7 +122,7 @@ with gr.Blocks() as demo:
119
  with gr.Row():
120
  with gr.Column():
121
  species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
122
- top_k = gr.Slider(1, 5, value=1, label="Top-k", info="Choose between 1 and 5.")
123
  with gr.Column():
124
  text_output_1 = gr.Textbox()
125
  text_output_2 = gr.Image()
@@ -138,7 +141,7 @@ with gr.Blocks() as demo:
138
  gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
139
  gr.Examples([["vaccinium myrtillus, dryopteris dilatata, molinia caerulea"]], [species_2], [image_output_1, image_output_2], masking, True)
140
 
141
- text_button.click(classification, inputs=[species], outputs=[text_output_1, text_output_2])
142
  image_button.click(masking, inputs=[species_2], outputs=[image_output_1, image_output_2])
143
 
144
  demo.launch()
 
2
  from transformers import pipeline
3
  import requests
4
  from bs4 import BeautifulSoup
5
+ import pandas as pd
6
 
7
  # Initialize models
8
  classification_model = pipeline("text-classification", model="models/text_classification_model", tokenizer="models/text_classification_model", top_k=5)
9
  mask_model = pipeline("fill-mask", model="models/fill_mask_model", tokenizer="models/fill_mask_model", top_k=100)
10
+
11
+ # Load data
12
+ eunis_habitats = pd.read_excel('data/eunis_habitats.xlsx')
13
 
14
  def return_habitat_image(habitat_label):
15
  floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
 
74
  text = f"This vegetation plot belongs to the habitat {habitat_labels[0]}."
75
  else:
76
  text = f"This vegetation plot belongs to the habitats {', '.join(habitat_labels[:-1])} and {habitat_labels[-1]}."
77
+ habitat_name = eunis_habitats[eunis_habitats['EUNIS 2020 code'] == habitat_labels[0]]['EUNIS-2021 habitat name'].values[0]
78
+ text += f"\nThe most likely habitat is {habitat_name} (see image below)."
79
  image_output = return_habitat_image(habitat_labels[0])
80
  return text, image_output
81
 
 
88
  best_position = None
89
  best_sentence = None
90
 
 
91
  for i in range(len(text_split) + 1):
 
92
  masked_text = ', '.join(text_split[:i] + ['[MASK]'] + text_split[i:])
93
 
94
  j = 0
 
103
  score = prediction['score']
104
  sentence = prediction['sequence']
105
 
 
106
  if score > max_score:
107
  max_score = score
108
  best_prediction = species
 
122
  with gr.Row():
123
  with gr.Column():
124
  species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
125
+ top_k = gr.Slider(1, 5, value=1, label="Top-k", info="Choose the number of top habitats to display.")
126
  with gr.Column():
127
  text_output_1 = gr.Textbox()
128
  text_output_2 = gr.Image()
 
141
  gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
142
  gr.Examples([["vaccinium myrtillus, dryopteris dilatata, molinia caerulea"]], [species_2], [image_output_1, image_output_2], masking, True)
143
 
144
+ text_button.click(classification, inputs=[species, top_k], outputs=[text_output_1, text_output_2])
145
  image_button.click(masking, inputs=[species_2], outputs=[image_output_1, image_output_2])
146
 
147
  demo.launch()