Spaces:
Build error
Build error
Celeste-cj
commited on
Commit
·
55b92ea
1
Parent(s):
c75d8ab
add dpt
Browse files- .gitignore +3 -0
- app.py +42 -0
- examples/agra.jpeg +0 -0
- examples/human.jpeg +0 -0
- examples/images.jpeg +0 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
flagged
|
3 |
+
gradio_cached_examples
|
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForDepthEstimation, DPTImageProcessor
|
8 |
+
|
9 |
+
|
10 |
+
processor = DPTImageProcessor.from_pretrained(
|
11 |
+
"Intel/dpt-large")
|
12 |
+
model = AutoModelForDepthEstimation.from_pretrained("Intel/dpt-large")
|
13 |
+
|
14 |
+
|
15 |
+
def main(image, input_size=384):
|
16 |
+
# prepare image for the model
|
17 |
+
inputs = processor(images=image, return_tensors="pt", do_resize=True, size=(
|
18 |
+
input_size, input_size), keep_aspect_ratio=True)
|
19 |
+
print(type(inputs), inputs.data["pixel_values"].shape)
|
20 |
+
|
21 |
+
# do inference
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
predicted_depth = outputs.predicted_depth
|
25 |
+
|
26 |
+
# interpolate to original size
|
27 |
+
prediction = torch.nn.functional.interpolate(predicted_depth.unsqueeze(
|
28 |
+
1), size=image.shape[:-1], mode="bicubic").squeeze()
|
29 |
+
output = prediction.cpu().numpy().copy()
|
30 |
+
formatted = (output * 255 / output.max()).astype("uint8")
|
31 |
+
depth = Image.fromarray(formatted)
|
32 |
+
return depth
|
33 |
+
|
34 |
+
|
35 |
+
title = "Demo: monocular depth estimation with DPT"
|
36 |
+
description = "This demo uses <a href='https://huggingface.co/Intel/dpt-large' target='_blank'>DPT</a> to estimate depth from monocular image."
|
37 |
+
examples = [[f"examples/{file}"]
|
38 |
+
for file in os.listdir("examples") if file[0] != "."]
|
39 |
+
|
40 |
+
demo = gr.Interface(fn=main, inputs=[gr.Image(label="Input Image"), gr.Slider(128, 512, value=384, label="Input Size")], outputs="image",
|
41 |
+
title=title, description=description, examples=examples, cache_examples=True)
|
42 |
+
demo.launch(debug=True, share=True)
|
examples/agra.jpeg
ADDED
examples/human.jpeg
ADDED
examples/images.jpeg
ADDED