Canstralian commited on
Commit
c0aa793
·
verified ·
1 Parent(s): b2d9c06

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -20,31 +20,30 @@ dataset_names = [
20
  datasets = {name: load_dataset(name) for name in dataset_names}
21
 
22
  # Load SentenceTransformer model
23
- model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
24
 
25
  # Define sentences
26
  sentences = [
27
  "The firewall successfully blocked unauthorized access attempts.",
28
  "The system detected a potential phishing attack targeting users.",
29
  "Regular software updates are essential to patch known vulnerabilities.",
30
- "Implementing multi-factor authentication enhances account security."
31
  "The function returns the sum of two numbers.",
32
  "A list comprehension provides a concise way to create lists.",
33
  "The 'try' block is used to handle exceptions in Python.",
34
  "Using 'lambda' allows for the creation of anonymous functions."
35
  ]
36
 
37
-
38
  # Compute sentence embeddings
39
- embeddings = model.encode(sentences)
40
 
41
  # Calculate cosine similarity between sentence embeddings
42
  similarities = cosine_similarity(embeddings)
43
 
44
  # Print similarity matrix shape and values
45
- print(similarities.shape) # Expected output: (4, 4)
46
  print(similarities)
47
 
48
  # Load transformer model for Seq2Seq tasks
49
  tokenizer = AutoTokenizer.from_pretrained("cssupport/t5-small-awesome-text-to-sql")
50
- model = AutoModelForSeq2SeqLM.from_pretrained("cssupport/t5-small-awesome-text-to-sql")
 
20
  datasets = {name: load_dataset(name) for name in dataset_names}
21
 
22
  # Load SentenceTransformer model
23
+ sentence_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
24
 
25
  # Define sentences
26
  sentences = [
27
  "The firewall successfully blocked unauthorized access attempts.",
28
  "The system detected a potential phishing attack targeting users.",
29
  "Regular software updates are essential to patch known vulnerabilities.",
30
+ "Implementing multi-factor authentication enhances account security.",
31
  "The function returns the sum of two numbers.",
32
  "A list comprehension provides a concise way to create lists.",
33
  "The 'try' block is used to handle exceptions in Python.",
34
  "Using 'lambda' allows for the creation of anonymous functions."
35
  ]
36
 
 
37
  # Compute sentence embeddings
38
+ embeddings = sentence_model.encode(sentences)
39
 
40
  # Calculate cosine similarity between sentence embeddings
41
  similarities = cosine_similarity(embeddings)
42
 
43
  # Print similarity matrix shape and values
44
+ print(similarities.shape) # Expected output: (8, 8)
45
  print(similarities)
46
 
47
  # Load transformer model for Seq2Seq tasks
48
  tokenizer = AutoTokenizer.from_pretrained("cssupport/t5-small-awesome-text-to-sql")
49
+ seq2seq_model = AutoModelForSeq2SeqLM.from_pretrained("cssupport/t5-small-awesome-text-to-sql")