import gradio as gr | |
from datasets import load_dataset | |
# Load datasets | |
ds1 = load_dataset("b-mc2/sql-create-context") | |
ds2 = load_dataset("TuneIt/o1-python") | |
ds3 = load_dataset("HuggingFaceFW/fineweb-2", "aai_Latn") | |
ds4 = load_dataset("HuggingFaceFW/fineweb-2", "aai_Latn_removed") | |
ds5 = load_dataset("HuggingFaceFW/fineweb-2", "aak_Latn") | |
ds6 = load_dataset("sentence-transformers/embedding-training-data") | |
# Load the model and create a Gradio interface | |
demo = gr.load("huggingface/distilbert-base-uncased") | |
# Launch the Gradio app | |
demo.launch() | |