Spaces:
Runtime error
Runtime error
File size: 1,363 Bytes
f6c4656 4daff63 7495eb5 4daff63 f6c4656 7495eb5 9219820 f6c4656 4daff63 f6c4656 9219820 7ea3034 4daff63 9219820 7ea3034 4daff63 f6c4656 4daff63 0141b73 f6c4656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the model and tokenizer from Hugging Face Hub
model_path = "Canstralian/pentest_ai" # Replace with your model path if needed
model = AutoModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Confirm successful loading
print(f"Model and Tokenizer loaded from {model_path}")
# Function to handle user inputs and generate responses
def generate_text(instruction):
# Encode the input text to token IDs
inputs = tokenizer.encode(instruction, return_tensors='pt', truncation=True, max_length=512)
print(f"Encoded input: {inputs}")
# Generate the output text
outputs = model.generate(inputs, max_length=150, num_beams=5, do_sample=True) # Adjust if needed
# Decode the output and return the response
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return output_text
# Gradio interface to interact with the text generation function
iface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your question or prompt here..."),
outputs="text",
title="Pentest AI Text Generator",
description="Generate text using a fine-tuned model for pentesting-related queries."
)
# Launch the interface
iface.launch()
|