File size: 9,760 Bytes
a001524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39ed5d
e1c499b
 
9f5ba58
 
ad2fc15
 
9f5ba58
55f4bdb
 
 
a001524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import copy

import torch
import numpy as np
import gradio as gr
from spoter_mod.skeleton_extractor import obtain_pose_data
from spoter_mod.normalization.body_normalization import normalize_single_dict as normalize_single_body_dict, BODY_IDENTIFIERS
from spoter_mod.normalization.hand_normalization import normalize_single_dict as normalize_single_hand_dict, HAND_IDENTIFIERS


model = torch.load("spoter-checkpoint.pth", map_location=torch.device('cpu'))
model.train(False)

HAND_IDENTIFIERS = [id + "_Left" for id in HAND_IDENTIFIERS] + [id + "_Right" for id in HAND_IDENTIFIERS]
GLOSS = ['book', 'drink', 'computer', 'before', 'chair', 'go', 'clothes', 'who', 'candy', 'cousin', 'deaf', 'fine',
         'help', 'no', 'thin', 'walk', 'year', 'yes', 'all', 'black', 'cool', 'finish', 'hot', 'like', 'many', 'mother',
         'now', 'orange', 'table', 'thanksgiving', 'what', 'woman', 'bed', 'blue', 'bowling', 'can', 'dog', 'family',
         'fish', 'graduate', 'hat', 'hearing', 'kiss', 'language', 'later', 'man', 'shirt', 'study', 'tall', 'white',
         'wrong', 'accident', 'apple', 'bird', 'change', 'color', 'corn', 'cow', 'dance', 'dark', 'doctor', 'eat',
         'enjoy', 'forget', 'give', 'last', 'meet', 'pink', 'pizza', 'play', 'school', 'secretary', 'short', 'time',
         'want', 'work', 'africa', 'basketball', 'birthday', 'brown', 'but', 'cheat', 'city', 'cook', 'decide', 'full',
         'how', 'jacket', 'letter', 'medicine', 'need', 'paint', 'paper', 'pull', 'purple', 'right', 'same', 'son',
         'tell', 'thursday']

device = torch.device("cpu")
if torch.cuda.is_available():
    device = torch.device("cuda")


def tensor_to_dictionary(landmarks_tensor: torch.Tensor) -> dict:

    data_array = landmarks_tensor.numpy()
    output = {}

    for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
        output[identifier] = data_array[:, landmark_index]

    return output


def dictionary_to_tensor(landmarks_dict: dict) -> torch.Tensor:

    output = np.empty(shape=(len(landmarks_dict["leftEar"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2))

    for landmark_index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
        output[:, landmark_index, 0] = [frame[0] for frame in landmarks_dict[identifier]]
        output[:, landmark_index, 1] = [frame[1] for frame in landmarks_dict[identifier]]

    return torch.from_numpy(output)


def greet(label, video0, video1):

    if label == "Webcam":
        video = video0

    elif label == "Video":
        video = video1

    elif label == "X":
        return {"A": 0.8, "B": 0.1, "C": 0.1}

    else:
        return {}

    data = obtain_pose_data(video)

    depth_map = np.empty(shape=(len(data.data_hub["nose_X"]), len(BODY_IDENTIFIERS + HAND_IDENTIFIERS), 2))

    for index, identifier in enumerate(BODY_IDENTIFIERS + HAND_IDENTIFIERS):
        depth_map[:, index, 0] = data.data_hub[identifier + "_X"]
        depth_map[:, index, 1] = data.data_hub[identifier + "_Y"]

    depth_map = torch.from_numpy(np.copy(depth_map))

    depth_map = tensor_to_dictionary(depth_map)

    keys = copy.copy(list(depth_map.keys()))
    for key in keys:
        data = depth_map[key]
        del depth_map[key]
        depth_map[key.replace("_Left", "_0").replace("_Right", "_1")] = data

    depth_map = normalize_single_body_dict(depth_map)
    depth_map = normalize_single_hand_dict(depth_map)

    keys = copy.copy(list(depth_map.keys()))
    for key in keys:
        data = depth_map[key]
        del depth_map[key]
        depth_map[key.replace("_0", "_Left").replace("_1", "_Right")] = data

    depth_map = dictionary_to_tensor(depth_map)

    depth_map = depth_map - 0.5

    inputs = depth_map.squeeze(0).to(device)
    outputs = model(inputs).expand(1, -1, -1)
    results = torch.nn.functional.softmax(outputs, dim=2).detach().numpy()[0, 0]

    results = {GLOSS[i]: float(results[i]) for i in range(100)}

    return results


label = gr.outputs.Label(num_top_classes=5, label="Top class probabilities")
demo = gr.Interface(fn=greet, inputs=[gr.Dropdown(["Webcam", "Video"], label="Please select the input type:", type="value"), gr.Video(source="webcam", label="Webcam recording", type="mp4"), gr.Video(source="upload", label="Video upload", type="mp4")], outputs=label,
                    title="🤟 SPOTER Sign language recognition",
                    description="""Current user interfaces are not accessible for D/deaf and hard-of-hearing users, whose natural communication medium is sign language. We work on AI systems for sign language to come closer to sign-driven technology and empower accessible apps, websites, and video conferencing platforms.
Try out our recent model for sign language recognition right in your browser! The model below takes a video of a single sign in the American Sign Language at the input and provides you with probabilities of the lemmas (equivalent to words in natural language).
### Our work at CVPR
Our efforts on lightweight and efficient models for sign language recognition were first introduced at WACV with our SPOTER paper. We now presented a work-in-progress follow-up here at CVPR's AVA workshop. Be sure to check our work and code below:                
- **WACV2022** - Original SPOTER paper - [Paper](https://openaccess.thecvf.com/content/WACV2022W/HADCV/papers/Bohacek_Sign_Pose-Based_Transformer_for_Word-Level_Sign_Language_Recognition_WACVW_2022_paper.pdf), [Code](https://github.com/matyasbohacek/spoter)
- **CVPR2022 (AVA Worshop)** - Follow-up WIP – [Extended Abstract](https://drive.google.com/file/d/1Szbhi7ZwZ6VAWAcGcDDU6qV9Uj9xnDsS/view?usp=sharing), [Poster](https://drive.google.com/file/d/1_xvmTNbLjTrx6psKdsLkufAtfmI5wfbF/view?usp=sharing)                 
### How to sign?       
The model wrapped in this demo was trained on [WLASL100](https://dxli94.github.io/WLASL/), so it only knows selected ASL vocabulary. Take a look at these tutorial video examples (this is how you sign [computer](https://www.handspeak.com/word/search/index.php?id=449), [work](https://www.handspeak.com/word/search/index.php?id=2423), or [time](https://www.handspeak.com/word/search/index.php?id=2223)), try to replicate them yourself, and have them recognized using the webcam capture below. Have fun!
> The demo can analyze webcam recordings or your uploaded videos. Before you hit Submit, **don't forget to select the input source in the dropdown first**.""",
                    article="This is joint work of [Matyas Bohacek](https://scholar.google.cz/citations?user=wDy1xBwAAAAJ) and [Zhuo Cao](https://www.linkedin.com/in/zhuo-cao-b0787a1aa/?originalSubdomain=hk). For more info, visit [our website](https://www.signlanguagerecognition.com). To contact us, drop an e-mail [here](mailto:[email protected]).",
                    css="""
                            @font-face {
                                font-family: Graphik;
                                font-weight: regular;
                                src: url("https://www.signlanguagerecognition.com/supplementary/GraphikRegular.otf") format("opentype");
                            }

                            @font-face {
                                font-family: Graphik;
                                font-weight: bold;
                                src: url("https://www.signlanguagerecognition.com/supplementary/GraphikBold.otf") format("opentype");
                            }

                            @font-face {
                                font-family: MonumentExpanded;
                                font-weight: regular;
                                src: url("https://www.signlanguagerecognition.com/supplementary/MonumentExtended-Regular.otf") format("opentype");
                            }

                            @font-face {
                                font-family: MonumentExpanded;
                                font-weight: bold;
                                src: url("https://www.signlanguagerecognition.com/supplementary/MonumentExtended-Bold.otf") format("opentype");
                            }

                            html {
                                font-family: "Graphik";
                            }   

                            h1 {
                                font-family: "MonumentExpanded";
                            }

                            #12 {
        -                       background-image: linear-gradient(to left, #61D836, #6CB346) !important;
                                background-color: #61D836 !important;
                            }

                            #12:hover {
        -                       background-image: linear-gradient(to left, #61D836, #6CB346) !important;
                                background-color: #6CB346 !important;
                                border: 0 !important;
                                border-color: 0 !important;
                            }

                            .dark .gr-button-primary {
                                --tw-gradient-from: #61D836;
                                --tw-gradient-to: #6CB346;
                                border: 0 !important;
                                border-color: 0 !important;
                            }

                            .dark .gr-button-primary:hover {
                                --tw-gradient-from: #64A642;
                                --tw-gradient-to: #58933B;
                                border: 0 !important;
                                border-color: 0 !important;
                            }
                           """,
                            cache_examples=True
                    )

demo.launch(debug=True)