File size: 9,741 Bytes
eba8a37 fd6f269 eba8a37 fd6f269 eba8a37 f35c65c fd6f269 eba8a37 f35c65c eba8a37 fd6f269 eba8a37 23add19 eba8a37 23add19 eba8a37 fd6f269 eba8a37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import json
import os
import filelock
import huggingface_hub
import pandas as pd
from utils import (
build_datasets_urls,
build_models_urls,
build_text_icon,
download_favicons,
get_base_url,
get_domain_name,
)
HF_ICON = "https://huggingface.co/front/assets/huggingface_logo.svg"
CROSS_ICON = "https://upload.wikimedia.org/wikipedia/commons/4/4e/Cross.png"
DISABLE_ONLINE_CACHE = False
ONLINE_CACHE = "CONDA-Workshop/RequestCache"
def save_cache(cache_data, cache_file, initial_timestamp):
print(f"Saving cache to {cache_file}")
# Acquire lock before reading and updating the file to prevent race conditions
with filelock.FileLock(f"{cache_file}.lock"):
# Check if the file has been modified since the initial read
current_timestamp = (
os.path.getmtime(cache_file) if os.path.exists(cache_file) else None
)
if current_timestamp is None or initial_timestamp != current_timestamp:
# File has been modified or created since initial read, re-read the file
try:
with open(cache_file, "r", encoding="utf8") as f:
# Update the dictionary with newly added entries
cache_dict = json.load(f)
# Test if cache_dict and cache_data are different
if cache_dict != cache_data:
cache_data.update(cache_dict)
except FileNotFoundError:
pass # If the file doesn't exist at this point, continue with the current dictionary
# Write the updated dictionary back to the file
with open(cache_file, "w", encoding="utf8") as f:
json.dump(cache_data, f, ensure_ascii=False, indent=4)
if not DISABLE_ONLINE_CACHE:
try:
huggingface_hub.upload_file(
repo_id=ONLINE_CACHE,
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
path_in_repo=cache_file,
path_or_fileobj=cache_file,
)
except Exception as e:
print(f"Unable to upload {cache_file}: {e}")
return cache_data
def update_favicon_cache(sources):
# Load the favicon dictionary if it exists
favicon_dict = {}
favicon_file_path = "favicons.json"
initial_timestamp = None
if not DISABLE_ONLINE_CACHE:
try:
huggingface_hub.hf_hub_download(
repo_id=ONLINE_CACHE,
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
filename=favicon_file_path,
local_dir=os.getcwd(),
)
except Exception as e:
print(f"Unable to download favicons.json: {e}")
# Attempt to load the favicon dictionary and record its last modification time
if os.path.exists(favicon_file_path):
initial_timestamp = os.path.getmtime(favicon_file_path)
try:
with open(favicon_file_path, "r", encoding="utf8") as f:
favicon_dict = json.load(f)
except FileNotFoundError:
pass # File not found, proceed with an empty dictionary
# Determine which favicons need to be downloaded
missing_domains = [domain for domain in sources if domain not in favicon_dict]
# Download missing favicons in batch
if missing_domains:
new_favicon_urls = download_favicons(missing_domains)
favicon_dict.update(new_favicon_urls)
favicon_dict = save_cache(
cache_data=favicon_dict,
cache_file=favicon_file_path,
initial_timestamp=initial_timestamp,
)
return favicon_dict
def update_model_url_cache(models):
models = [x for x in models if x is not None]
models = list(set(models))
# Load the model url dictionary if it exists
model_url_dict = {}
model_url_file_path = "model_urls.json"
initial_timestamp = None
if not DISABLE_ONLINE_CACHE:
try:
huggingface_hub.hf_hub_download(
repo_id=ONLINE_CACHE,
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
filename=model_url_file_path,
local_dir=os.getcwd(),
)
except Exception as e:
print(f"Unable to download model_urls.json: {e}")
# Attempt to load the model url dictionary and record its last modification time
if os.path.exists(model_url_file_path):
initial_timestamp = os.path.getmtime(model_url_file_path)
try:
with open(model_url_file_path, "r", encoding="utf8") as f:
model_url_dict = json.load(f)
except FileNotFoundError:
pass # File not found, proceed with an empty dictionary
# Determine which model urls need to be downloaded
missing_model_urls = [model for model in models if model not in model_url_dict]
# Download missing model urls in batch
if missing_model_urls:
new_model_urls = build_models_urls(missing_model_urls)
model_url_dict.update(new_model_urls)
model_url_dict = save_cache(
cache_data=model_url_dict,
cache_file=model_url_file_path,
initial_timestamp=initial_timestamp,
)
return model_url_dict
def update_dataset_url_cache(datasets):
datasets = [x for x in datasets if x is not None]
datasets = list(set(datasets))
# Load the dataset url dictionary if it exists
dataset_url_dict = {}
dataset_url_file_path = "dataset_urls.json"
initial_timestamp = None
if not DISABLE_ONLINE_CACHE:
try:
huggingface_hub.hf_hub_download(
repo_id=ONLINE_CACHE,
repo_type="dataset",
token=os.environ.get("TOKEN") or True,
filename=dataset_url_file_path,
local_dir=os.getcwd(),
)
except Exception as e:
print(f"Unable to download dataset_urls.json: {e}")
# Attempt to load the dataset url dictionary and record its last modification time
if os.path.exists(dataset_url_file_path):
initial_timestamp = os.path.getmtime(dataset_url_file_path)
try:
with open(dataset_url_file_path, "r", encoding="utf8") as f:
dataset_url_dict = json.load(f)
except FileNotFoundError:
pass # File not found, proceed with an empty dictionary
# Determine which dataset urls need to be downloaded
missing_dataset_urls = [
dataset for dataset in datasets if dataset not in dataset_url_dict
]
# Download missing dataset urls in batch
if missing_dataset_urls:
new_dataset_urls = build_datasets_urls(missing_dataset_urls)
dataset_url_dict.update(new_dataset_urls)
dataset_url_dict = save_cache(
cache_data=dataset_url_dict,
cache_file=dataset_url_file_path,
initial_timestamp=initial_timestamp,
)
return dataset_url_dict
def get_dataframe():
# Load the contamination_report.csv file
data = pd.read_csv("contamination_report.csv", delimiter=";", header=0)
# Load the favicon dictionary if it exists
favicon_dict = {}
# Update the favicon dictionary
favicon_dict = update_favicon_cache([get_base_url(x) for x in data["Reference"]])
# Update the model url dictionary
model_url_dict = update_model_url_cache(
data[data["Model or corpus"] == "model"]["Contaminated Source"]
)
# Update the dataset url dictionary
dataset_url_dict = update_dataset_url_cache(
list(data["Evaluation Dataset"])
+ list(data[data["Model or corpus"] == "corpus"]["Contaminated Source"])
)
# Add favicons URLs to the dataframe in a vectorized manner
data["Reference"] = data["Reference"].apply(
lambda x: build_text_icon(
text=get_domain_name(x),
url=x,
icon_url=favicon_dict.get(get_base_url(x), ""),
)
)
PR_URL_FORMAT = "https://huggingface.co/spaces/CONDA-Workshop/Data-Contamination-Report/discussions/{}"
data["PR"] = data["PR"].apply(
lambda x: build_text_icon(
text="",
url=PR_URL_FORMAT.format(int(x)) if not pd.isna(x) else "no link",
icon_url=HF_ICON if x == x else CROSS_ICON,
)
)
data["Evaluation Dataset"] = data["Evaluation Dataset"].apply(
lambda x: build_text_icon(
text=x,
url=dataset_url_dict.get(x, ""),
icon_url=HF_ICON,
)
)
data["Evaluation Dataset"] = data.apply(
lambda x: x["Evaluation Dataset"] + f" ({x['Subset']})" if pd.notna(x["Subset"]) else x["Evaluation Dataset"],
axis=1,
)
del data["Subset"]
# For "Contaminated Source" use build_dataset_url if "Model or corpus" is "corpus" and build_model_url if "Model or corpus" is "model"
data["Contaminated Source"] = data.apply(
lambda x: build_text_icon(
text=x["Contaminated Source"] + f" ({x['Version']})" if pd.notna(x["Version"]) else x["Contaminated Source"],
url=dataset_url_dict.get(x["Contaminated Source"], "")
if x["Model or corpus"] == "corpus"
else model_url_dict.get(x["Contaminated Source"], ""),
icon_url=HF_ICON,
),
axis=1,
)
del data["Version"]
data["Train Split"] = data["Train Split"].apply(lambda x: x/100 if x else x)
data["Development Split"] = data["Development Split"].apply(lambda x: x/100 if x else x)
data["Test Split"] = data["Test Split"].apply(lambda x: x/100 if x else x)
return data
|