CMLL commited on
Commit
0464b4c
·
verified ·
1 Parent(s): 0b5e1aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +56 -56
app.py CHANGED
@@ -1,63 +1,63 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
 
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+ import torch
3
  import gradio as gr
 
4
 
5
+ # Set the device
6
+ device = "cpu" # replace with your device: "cpu", "cuda", "mps"
7
+
8
+ # Initialize model and tokenizer
9
+ peft_model_id = "CMLM/ZhongJing-2-1_8b"
10
+ base_model_id = "Qwen/Qwen1.5-1.8B-Chat"
11
+ model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto")
12
+ model.load_adapter(peft_model_id)
13
+ tokenizer = AutoTokenizer.from_pretrained(
14
+ "CMLM/ZhongJing-2-1_8b",
15
+ padding_side="right",
16
+ trust_remote_code=True,
17
+ pad_token=''
18
+ )
 
 
 
 
 
 
 
 
 
19
 
20
+ def get_model_response(question):
21
+ # Create the prompt without context
22
+ prompt = f"Question: {question}"
23
+ messages = [
24
+ {"role": "system", "content": "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来 of Fudan University."},
25
+ {"role": "user", "content": prompt}
26
+ ]
27
 
28
+ # Prepare the input
29
+ text = tokenizer.apply_chat_template(
30
  messages,
31
+ tokenize=False,
32
+ add_generation_prompt=True
33
+ )
34
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
35
+
36
+ # Generate the response
37
+ generated_ids = model.generate(
38
+ model_inputs.input_ids,
39
+ max_new_tokens=512
40
+ )
41
+ generated_ids = [
42
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
43
+ ]
44
+
45
+ # Decode the response
46
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
47
+ return response
48
+
49
+ # Define a Gradio interface without the context parameter
50
+ def chat_interface(question):
51
+ response = get_model_response(question)
52
+ return response
53
+
54
+ iface = gr.Interface(
55
+ fn=chat_interface,
56
+ inputs=["text"],
57
+ outputs="text",
58
+ title="仲景GPT-V2-1.8B",
59
+ description="博极医源,精勤不倦。Unlocking the Wisdom of Traditional Chinese Medicine with AI."
60
  )
61
 
62
+ # Launch the interface with sharing enabled
63
+ iface.launch(share=True)