|
import json |
|
import os |
|
from glob import glob |
|
from datetime import datetime, timezone |
|
import numpy as np |
|
import pandas as pd |
|
from src.display.formatting import styled_error, styled_message, styled_warning |
|
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO, RESULTS_REPO |
|
from src.submission.check_validity import ( |
|
already_submitted_models, |
|
check_model_card, |
|
get_model_size, |
|
is_model_on_hub, |
|
) |
|
|
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
BENCHMARK_COL_IDS, |
|
COLS |
|
) |
|
|
|
REQUESTED_MODELS = None |
|
USERS_TO_SUBMISSION_DATES = None |
|
|
|
|
|
def add_new_eval( |
|
eval_name: str, |
|
upload: object, |
|
precision: str, |
|
hf_model_id: str, |
|
contact_email: str, |
|
captcha_ok: bool, |
|
): |
|
try: |
|
if not eval_name: |
|
return styled_error("Please provide a model name."), captcha_ok |
|
|
|
if not precision: |
|
return styled_error("Please select precision."), captcha_ok |
|
|
|
if not contact_email: |
|
return styled_error("Please provide your contact email."), captcha_ok |
|
|
|
if not upload: |
|
return styled_error("Please upload a results file."), captcha_ok |
|
|
|
if not captcha_ok: |
|
return styled_error("Please prove you are a human!"), captcha_ok |
|
|
|
with open(upload, mode="r") as f: |
|
data = json.load(f) |
|
|
|
results = data['results'] |
|
|
|
acc_keys = ['exact_match,none', 'exact_match,flexible-extract', 'exact_match,strict-match'] |
|
|
|
ret = { |
|
'eval_name': eval_name, |
|
'precision': precision, |
|
'hf_model_id': hf_model_id, |
|
'contact_email': contact_email |
|
} |
|
|
|
for k, v in results.items(): |
|
for acc_k in acc_keys: |
|
if acc_k in v and k in BENCHMARK_COL_IDS: |
|
ret[k] = v[acc_k] |
|
|
|
for k,v in ret.items(): |
|
if k in ['eval_name', 'precision', 'hf_model_id', 'contact_email']: |
|
continue |
|
if k not in BENCHMARK_COL_IDS: |
|
print(f"Missing: {k}") |
|
return styled_error(f'Missing: {k}'), captcha_ok |
|
|
|
if len(BENCHMARK_COL_IDS) != len(ret) - 4: |
|
print(f"Missing columns") |
|
return styled_error(f'Missing result entries'), captcha_ok |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
user_name = "czechbench_leaderboard" |
|
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
|
|
existing_eval_names = [] |
|
for fname in glob(f"{OUT_DIR}/*.json"): |
|
with open(fname, mode="r") as f: |
|
existing_eval = json.load(f) |
|
existing_eval_names.append(existing_eval['eval_name']) |
|
|
|
if ret['eval_name'] in existing_eval_names: |
|
print(f"Model name {ret['eval_name']} is used!") |
|
return styled_error(f"Model name {ret['eval_name']} is used!"), captcha_ok |
|
|
|
out_path = f"{OUT_DIR}/{eval_name}_eval_request.json" |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(ret)) |
|
|
|
|
|
print("Uploading eval file") |
|
|
|
print("path_or_fileobj: ", out_path) |
|
print("path_in_repo: ",out_path.split("eval-queue/")[1]) |
|
print("repo_id: ", RESULTS_REPO) |
|
print("repo_type: ", "dataset") |
|
|
|
response = API.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path.split("eval-queue/")[1], |
|
repo_id=RESULTS_REPO, |
|
repo_type="dataset", |
|
commit_message=f"Add {eval_name} to eval queue", |
|
) |
|
|
|
""" |
|
global REQUESTED_MODELS |
|
global USERS_TO_SUBMISSION_DATES |
|
if not REQUESTED_MODELS: |
|
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) |
|
|
|
user_name = "" |
|
model_path = model |
|
if "/" in model: |
|
user_name = model.split("/")[0] |
|
model_path = model.split("/")[1] |
|
|
|
precision = precision.split(" ")[0] |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
|
|
if model_type is None or model_type == "": |
|
return styled_error("Please select a model type.") |
|
|
|
# Does the model actually exist? |
|
if revision == "": |
|
revision = "main" |
|
|
|
# Is the model on the hub? |
|
if weight_type in ["Delta", "Adapter"]: |
|
base_model_on_hub, error, _ = is_model_on_hub( |
|
model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True |
|
) |
|
if not base_model_on_hub: |
|
return styled_error(f'Base model "{base_model}" {error}') |
|
|
|
if not weight_type == "Adapter": |
|
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True) |
|
if not model_on_hub: |
|
return styled_error(f'Model "{model}" {error}') |
|
|
|
# Is the model info correctly filled? |
|
try: |
|
model_info = API.model_info(repo_id=model, revision=revision) |
|
except Exception: |
|
return styled_error("Could not get your model information. Please fill it up properly.") |
|
|
|
model_size = get_model_size(model_info=model_info, precision=precision) |
|
|
|
# Were the model card and license filled? |
|
try: |
|
license = model_info.cardData["license"] |
|
except Exception: |
|
return styled_error("Please select a license for your model") |
|
|
|
modelcard_OK, error_msg = check_model_card(model) |
|
if not modelcard_OK: |
|
return styled_error(error_msg) |
|
|
|
# Seems good, creating the eval |
|
print("Adding new eval") |
|
|
|
eval_entry = { |
|
"model": model, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"precision": precision, |
|
"weight_type": weight_type, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
"model_type": model_type, |
|
"likes": model_info.likes, |
|
"params": model_size, |
|
"license": license, |
|
} |
|
|
|
# Check for duplicate submission |
|
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: |
|
return styled_warning("This model has been already submitted.") |
|
|
|
print("Creating eval file") |
|
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json" |
|
|
|
with open(out_path, "w") as f: |
|
f.write(json.dumps(eval_entry)) |
|
|
|
print("Uploading eval file") |
|
API.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=out_path.split("eval-queue/")[1], |
|
repo_id=QUEUE_REPO, |
|
repo_type="dataset", |
|
commit_message=f"Add {model} to eval queue", |
|
) |
|
|
|
# Remove the local file |
|
os.remove(out_path) |
|
""" |
|
return styled_message( |
|
"Your results have been successfully submitted. They will be added to the leaderboard upon verification." |
|
), False |
|
|
|
except Exception as e: |
|
return styled_error(f"An error occurred: {e}"), captcha_ok |
|
|