|
import json |
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
from huggingface_hub import snapshot_download |
|
|
|
from src.display.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
TABLE_DESC, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.formatting import styled_error, styled_message, styled_warning |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
NUMERIC_INTERVALS, |
|
TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision, |
|
) |
|
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from captcha.image import ImageCaptcha |
|
from PIL import Image |
|
import random, string |
|
|
|
|
|
original_df = None |
|
leaderboard_df = None |
|
|
|
|
|
def restart_space(): |
|
API.restart_space(repo_id=REPO_ID, token=TOKEN) |
|
|
|
def download_data(): |
|
global original_df |
|
global leaderboard_df |
|
try: |
|
print(EVAL_REQUESTS_PATH,QUEUE_REPO) |
|
snapshot_download( |
|
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 |
|
) |
|
except Exception: |
|
restart_space() |
|
try: |
|
print(EVAL_RESULTS_PATH, RESULTS_REPO) |
|
snapshot_download( |
|
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30 |
|
) |
|
except Exception: |
|
restart_space() |
|
|
|
|
|
_, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
leaderboard_df = original_df.copy() |
|
|
|
|
|
download_data() |
|
|
|
|
|
""" |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
""" |
|
|
|
|
|
def update_table( |
|
hidden_df: pd.DataFrame, |
|
columns: list, |
|
query: str, |
|
): |
|
|
|
filtered_df = filter_queries(query, hidden_df) |
|
df = select_columns(filtered_df, columns) |
|
return df |
|
|
|
|
|
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: |
|
print(query) |
|
return df[(df[AutoEvalColumn.eval_name.name].str.contains(query, case=False))] |
|
|
|
|
|
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame: |
|
always_here_cols = [ |
|
|
|
AutoEvalColumn.eval_name.name, |
|
] |
|
|
|
filtered_df = df[ |
|
always_here_cols + [c for c in COLS if c in df.columns and c in columns] |
|
] |
|
return filtered_df |
|
|
|
|
|
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: |
|
final_df = [] |
|
if query != "" and query is not None: |
|
queries = [q.strip() for q in query.split(";")] |
|
for _q in queries: |
|
_q = _q.strip() |
|
if _q != "": |
|
temp_filtered_df = search_table(filtered_df, _q) |
|
if len(temp_filtered_df) > 0: |
|
final_df.append(temp_filtered_df) |
|
if len(final_df) > 0: |
|
filtered_df = pd.concat(final_df) |
|
filtered_df = filtered_df.drop_duplicates( |
|
subset=[AutoEvalColumn.eval_name.name] |
|
) |
|
|
|
return filtered_df |
|
|
|
|
|
def filter_models( |
|
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool |
|
) -> pd.DataFrame: |
|
|
|
|
|
|
|
|
|
|
|
|
|
filtered_df = df |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return filtered_df |
|
|
|
|
|
def validate_upload(input): |
|
try: |
|
with open(input, mode="r") as f: |
|
data = json.load(f) |
|
|
|
except: |
|
raise gr.Error("Cannot parse file") |
|
|
|
|
|
def generate_captcha(width=300, height=220, length=4): |
|
text = ''.join(random.choices(string.ascii_uppercase + string.digits, k=length)) |
|
captcha_obj = ImageCaptcha(width, height) |
|
data = captcha_obj.generate(text) |
|
image = Image.open(data) |
|
return image, text |
|
|
|
|
|
def validate_captcha(input, text, img): |
|
img, new_text = generate_captcha() |
|
if input.lower() == text.lower(): |
|
return True, styled_message("Correct! You can procede with your submission."), new_text, img, "" |
|
return False, styled_error("Incorrect! Please retry with the new code."), new_text, img, "" |
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π
Leaderboard", elem_id="llm-benchmark-tab-table", id=0) as tb_board: |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", |
|
show_label=False, |
|
elem_id="search-bar", |
|
) |
|
with gr.Row(): |
|
shown_columns = gr.CheckboxGroup( |
|
choices=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if not c.hidden and not c.never_hidden and not c.dummy |
|
], |
|
value=[ |
|
c.name |
|
for c in fields(AutoEvalColumn) |
|
if c.displayed_by_default and not c.hidden and not c.never_hidden |
|
], |
|
label="Select columns to show", |
|
elem_id="column-select", |
|
interactive=True, |
|
) |
|
""" |
|
with gr.Column(min_width=320): |
|
# with gr.Box(elem_id="box-filter"): |
|
filter_columns_type = gr.CheckboxGroup( |
|
label="Model types", |
|
choices=[t.to_str() for t in ModelType], |
|
value=[t.to_str() for t in ModelType], |
|
interactive=True, |
|
elem_id="filter-columns-type", |
|
) |
|
filter_columns_precision = gr.CheckboxGroup( |
|
label="Precision", |
|
choices=[i.value.name for i in Precision], |
|
value=[i.value.name for i in Precision], |
|
interactive=True, |
|
elem_id="filter-columns-precision", |
|
) |
|
filter_columns_size = gr.CheckboxGroup( |
|
label="Model sizes (in billions of parameters)", |
|
choices=list(NUMERIC_INTERVALS.keys()), |
|
value=list(NUMERIC_INTERVALS.keys()), |
|
interactive=True, |
|
elem_id="filter-columns-size", |
|
) |
|
""" |
|
gr.Markdown(TABLE_DESC, elem_classes="markdown-text") |
|
leaderboard_table = gr.components.Dataframe( |
|
value=leaderboard_df[ |
|
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] |
|
+ shown_columns.value |
|
|
|
], |
|
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, |
|
datatype=TYPES, |
|
elem_id="leaderboard-table", |
|
interactive=False, |
|
visible=True, |
|
wrap=False, |
|
|
|
) |
|
|
|
|
|
hidden_leaderboard_table_for_search = gr.components.Dataframe( |
|
value=original_df[COLS], |
|
headers=COLS, |
|
datatype=TYPES, |
|
visible=False, |
|
) |
|
search_bar.submit( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
) |
|
for selector in [ |
|
shown_columns, |
|
]: |
|
selector.change( |
|
update_table, |
|
[ |
|
hidden_leaderboard_table_for_search, |
|
shown_columns, |
|
search_bar, |
|
], |
|
leaderboard_table, |
|
queue=True, |
|
) |
|
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
""" |
|
with gr.Column(): |
|
|
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
""" |
|
with gr.Row(): |
|
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
model_name_textbox = gr.Textbox(label="Model name") |
|
|
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="other", |
|
interactive=True, |
|
info="What weight precision were you using during the evaluation?" |
|
) |
|
hf_model_id = gr.Textbox(label="Model link (Optional)", info="URL to the model's Hugging Face repository, or it's official website") |
|
contact_email = gr.Textbox(label="Your E-Mail") |
|
file_input = gr.File(file_count="single", interactive=True, label="Upload json file with evaluation results", file_types=['.json', '.jsonl']) |
|
file_input.upload(validate_upload, file_input) |
|
|
|
|
|
|
|
with gr.Group(): |
|
captcha_correct = gr.State(False) |
|
text = gr.State("") |
|
image, text.value = generate_captcha() |
|
captcha_img = gr.Image( |
|
image, |
|
label="Prove your humanity", |
|
interactive=False, |
|
show_download_button=False, |
|
show_fullscreen_button=False, |
|
show_share_button=False, |
|
) |
|
captcha_input = gr.Textbox(placeholder="Enter the text in the image above", show_label=False, container=False) |
|
check_button = gr.Button("Validate", interactive=True) |
|
captcha_result = gr.Markdown() |
|
check_button.click( |
|
fn = validate_captcha, |
|
inputs = [captcha_input, text, captcha_img], |
|
outputs = [captcha_correct, captcha_result, text, captcha_img, captcha_input], |
|
) |
|
|
|
submit_button = gr.Button("Submit Eval", interactive=True) |
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
fn = add_new_eval, |
|
inputs = [ |
|
model_name_textbox, |
|
file_input, |
|
precision, |
|
hf_model_id, |
|
contact_email, |
|
captcha_correct, |
|
], |
|
outputs = [submission_result, captcha_correct], |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
|
|
|
|
|
|
demo.queue(default_concurrency_limit=40).launch(server_name="0.0.0.0") |
|
|
|
|