|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
from src.display.about import Tasks |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
|
|
|
|
auto_eval_column_dict = [] |
|
""" |
|
# Init |
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
# Scores |
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) |
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) |
|
# Model information |
|
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) |
|
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) |
|
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) |
|
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) |
|
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) |
|
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) |
|
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) |
|
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) |
|
# Dummy column for the search bar (hidden by the custom CSS) |
|
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) |
|
""" |
|
|
|
|
|
auto_eval_column_dict.append(["eval_name", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", True)]) |
|
auto_eval_column_dict.append(["hf_model_id", ColumnContent, ColumnContent("Model URL", "str", False)]) |
|
auto_eval_column_dict.append(["agree_cs", ColumnContent, ColumnContent("AGREE", "number", True)]) |
|
auto_eval_column_dict.append(["anli_cs", ColumnContent, ColumnContent("ANLI", "number", True)]) |
|
auto_eval_column_dict.append(["arc_challenge_cs", ColumnContent, ColumnContent("ARC-Challenge", "number", True)]) |
|
auto_eval_column_dict.append(["arc_easy_cs", ColumnContent, ColumnContent("ARC-Easy", "number", True)]) |
|
auto_eval_column_dict.append(["belebele_cs", ColumnContent, ColumnContent("Belebele", "number", True)]) |
|
auto_eval_column_dict.append(["ctkfacts_cs", ColumnContent, ColumnContent("CTKFacts", "number", True)]) |
|
auto_eval_column_dict.append(["czechnews_cs", ColumnContent, ColumnContent("Czech News", "number", True)]) |
|
auto_eval_column_dict.append(["fb_comments_cs", ColumnContent, ColumnContent("Facebook Comments", "number", True)]) |
|
auto_eval_column_dict.append(["gsm8k_cs", ColumnContent, ColumnContent("GSM8K", "number", True)]) |
|
auto_eval_column_dict.append(["klokanek_cs", ColumnContent, ColumnContent("Klokanek", "number", True)]) |
|
auto_eval_column_dict.append(["mall_reviews_cs", ColumnContent, ColumnContent("Mall Reviews", "number", True)]) |
|
auto_eval_column_dict.append(["mmlu_cs", ColumnContent, ColumnContent("MMLU", "number", True)]) |
|
auto_eval_column_dict.append(["sqad_cs", ColumnContent, ColumnContent("SQAD", "number", True)]) |
|
auto_eval_column_dict.append(["subjectivity_cs", ColumnContent, ColumnContent("Subjectivity", "number", True)]) |
|
auto_eval_column_dict.append(["truthfulqa_cs", ColumnContent, ColumnContent("TruthfulQA", "number", True)]) |
|
|
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
HEADER_MAP = { |
|
"eval_name": "Model", |
|
"precision": "Precision", |
|
"hf_model_id": "Model URL", |
|
"agree_cs": "AGREE", |
|
"anli_cs": "ANLI", |
|
"arc_challenge_cs": "ARC-Challenge", |
|
"arc_easy_cs": "ARC-Easy", |
|
"belebele_cs": "Belebele", |
|
"ctkfacts_cs": "CTKFacts", |
|
"czechnews_cs": "Czech News", |
|
"fb_comments_cs": "Facebook Comments", |
|
"gsm8k_cs": "GSM8K", |
|
"klokanek_cs": "Klokanek", |
|
"mall_reviews_cs": "Mall Reviews", |
|
"mmlu_cs": "MMLU", |
|
"sqad_cs": "SQAD", |
|
"subjectivity_cs": "Subjectivity", |
|
"truthfulqa_cs": "TruthfulQA", |
|
} |
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
private = ColumnContent("private", "bool", True) |
|
precision = ColumnContent("precision", "str", True) |
|
weight_type = ColumnContent("weight_type", "str", "Original") |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
display_name: str = "" |
|
symbol: str = "" |
|
|
|
|
|
class ModelType(Enum): |
|
PT = ModelDetails(name="pretrained", symbol="🟢") |
|
FT = ModelDetails(name="fine-tuned", symbol="🔶") |
|
IFT = ModelDetails(name="instruction-tuned", symbol="⭕") |
|
RL = ModelDetails(name="RL-tuned", symbol="🟦") |
|
Unknown = ModelDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "🔶" in type: |
|
return ModelType.FT |
|
if "pretrained" in type or "🟢" in type: |
|
return ModelType.PT |
|
if "RL-tuned" in type or "🟦" in type: |
|
return ModelType.RL |
|
if "instruction-tuned" in type or "⭕" in type: |
|
return ModelType.IFT |
|
return ModelType.Unknown |
|
|
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
|
|
class Precision(Enum): |
|
other = ModelDetails("other") |
|
float64 = ModelDetails("float64") |
|
float32 = ModelDetails("float32") |
|
float16 = ModelDetails("float16") |
|
bfloat16 = ModelDetails("bfloat16") |
|
qt_8bit = ModelDetails("8bit") |
|
qt_4bit = ModelDetails("4bit") |
|
qt_GPTQ = ModelDetails("GPTQ") |
|
Unknown = ModelDetails("?") |
|
|
|
def from_str(precision): |
|
if precision in ["torch.float64", "torch.double" ,"float64"]: |
|
return Precision.float64 |
|
if precision in ["torch.float32", "torch.float" ,"float32"]: |
|
return Precision.tfloat32 |
|
if precision in ["torch.float16", "torch.half", "float16"]: |
|
return Precision.float16 |
|
if precision in ["torch.bfloat16", "bfloat16"]: |
|
return Precision.bfloat16 |
|
if precision in ["8bit", "int8"]: |
|
return Precision.qt_8bit |
|
if precision in ["4bit", "int4"]: |
|
return Precision.qt_4bit |
|
if precision in ["GPTQ", "None"]: |
|
return Precision.qt_GPTQ |
|
return Precision.other |
|
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [HEADER_MAP[t.value.col_name] for t in Tasks] |
|
BENCHMARK_COL_IDS = [t.value.col_name for t in Tasks] |
|
|
|
NUMERIC_INTERVALS = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~1.5": pd.Interval(0, 2, closed="right"), |
|
"~3": pd.Interval(2, 4, closed="right"), |
|
"~7": pd.Interval(4, 9, closed="right"), |
|
"~13": pd.Interval(9, 20, closed="right"), |
|
"~35": pd.Interval(20, 45, closed="right"), |
|
"~60": pd.Interval(45, 70, closed="right"), |
|
"70+": pd.Interval(70, 10000, closed="right"), |
|
} |
|
|