Spaces:
Running
Running
import gradio as gr | |
import os | |
import httpx | |
import numpy as np | |
import base64 | |
import torch | |
import torchaudio | |
import io | |
URL = os.environ['TEMP_HOSTING_URL'] | |
API_KEY = os.environ['TEMP_CALLING_KEY'] | |
def inference(reference_audio, text, reference_text, ras_K, ras_t_r, top_p, quality_prefix, clone_method): | |
_sr, _wav = reference_audio | |
wav = torch.from_numpy(_wav).float() | |
wav = wav / 32768.0 | |
if wav.dim() == 1: wav = wav[None] | |
else: | |
wav = wav.mean(dim=-1)[None] | |
wav = torchaudio.functional.resample(wav, _sr, 24000) | |
io_data = io.BytesIO() | |
torchaudio.save(io_data, wav, sample_rate=24000, format='wav') | |
io_data.seek(0) | |
encoded_data = base64.b64encode(io_data.read()) | |
encoded_str = encoded_data.decode("utf-8") | |
if clone_method == 'deep-clone': | |
dlc = 'fixed-ref' | |
elif clone_method == 'shallow-clone': | |
dlc = 'none' | |
elif clone_method == 'follow-on deep-clone': | |
dlc = 'per-chunk' | |
data = { | |
"text": text, | |
"reference_audio": encoded_str, # reference audio, b64 encoded. Should be <=15s. | |
"reference_text": reference_text if reference_text is not None and len(reference_text) > 0 else None, | |
"language": 'en-us', | |
"inference_settings": {'top_p': top_p, "prefix": quality_prefix, 'ras_K': ras_K, 'ras_t_r': ras_t_r, 'deep_clone_mode': dlc}, | |
} | |
print(f"Calling with payload {data['inference_settings']}") | |
# Send the POST request | |
headers={"Authorization": f"Api-Key {API_KEY}"} | |
response = httpx.post(URL, headers=headers, json=data, timeout=300) | |
# Check the response status code | |
if response.status_code == 200: print("Request successful!") | |
else: print("Request failed with status code", response.status_code) | |
full_audio_bytes = base64.b64decode(response.json()['output']) | |
wav, sr = torchaudio.load(io.BytesIO(full_audio_bytes)) | |
wav = wav.numpy() | |
return (sr, wav.T) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
gr.Markdown("## Reference Audio") | |
with gr.Row(): | |
reference_audio = gr.Audio(label="Drop Audio Here", max_length=16) | |
with gr.Row(): | |
gr.Markdown("## Text to Generate") | |
with gr.Row(): | |
text_input = gr.Textbox(label="Text to Generate") | |
with gr.Row(): | |
synthesize_button = gr.Button("Synthesize", variant="primary") | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
reference_text = gr.Textbox(label="Reference Text", | |
info="Leave blank to automatically transcribe the reference audio. Inference will be slightly faster if you specify the correct reference transcript below.") | |
with gr.Row(): | |
ras_K = gr.Slider(minimum=1, maximum=20, step=1, value=10, label="RAS_K", info="RAS sampling K value") | |
with gr.Row(): | |
ras_t_r = gr.Slider(minimum=0.001, maximum=1, step=0.001, value=0.09, label="RAS_t_r", info="RAS sampling t_r value") | |
with gr.Row(): | |
top_p = gr.Slider(minimum=0.001, maximum=1, step=0.001, value=0.2, label="top_p", info="top-p sampling value") | |
with gr.Row(): | |
quality_prefix = gr.Textbox('48000', label="quality_prefix", info="quality prefix string to append to generation", lines=1) | |
with gr.Row(): | |
gr.Markdown("Cloning method to use. Deep clone and shallow clone use the method described in the paper, " + | |
"while `follow-on deep clone` uses deep cloning, but always using the previous generated segment as the deep clone conditioning. " + | |
"This only makes a difference for long text inputs where the text is internally chunked up and generated in chunks.") | |
clone_method = gr.Radio(choices=['deep-clone', 'shallow-clone', 'follow-on deep-clone'], value='deep-clone', label="cloning method", info="cloning method to use") | |
with gr.Row(): | |
gr.Markdown("## Synthesized Audio") | |
with gr.Row(): | |
audio_output = gr.Audio(label="Synthesized Audio") | |
synthesize_button.click( | |
inference, | |
inputs=[reference_audio, text_input, reference_text, ras_K, ras_t_r, top_p, quality_prefix, clone_method], | |
outputs=[audio_output] | |
) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |