File size: 42,830 Bytes
e0fbfa8
71817ec
 
 
 
 
 
f340ee7
71817ec
519b16c
da8be82
47688e3
65cf050
32ffd0d
 
 
 
 
71817ec
32ffd0d
71817ec
550ed22
65cf050
 
 
854197f
 
 
 
 
47688e3
550ed22
 
 
 
854197f
23ece77
550ed22
 
 
406b47b
23ece77
4b95828
 
 
23ece77
 
 
 
 
 
 
 
518472b
23ece77
4b95828
 
 
23ece77
 
 
 
 
 
 
 
 
4b95828
 
 
23ece77
 
 
 
 
 
854197f
 
4b95828
 
 
854197f
23ece77
 
854197f
 
e0fbfa8
 
 
 
 
854197f
 
 
 
23ece77
854197f
65cf050
4b95828
854197f
65cf050
 
 
854197f
4b95828
f340ee7
 
23ece77
e0fbfa8
f340ee7
854197f
65cf050
854197f
23ece77
4b95828
 
 
23ece77
 
 
854197f
4b95828
23ece77
518472b
4b95828
23ece77
 
 
4b95828
23ece77
 
 
 
4b95828
23ece77
 
 
4b95828
23ece77
 
 
 
 
 
4b95828
23ece77
 
47688e3
23ece77
 
 
47688e3
23ece77
 
 
 
 
 
4b95828
23ece77
 
 
4b95828
23ece77
 
4b95828
 
23ece77
 
 
 
 
 
 
 
 
 
4b95828
23ece77
 
 
 
 
 
 
 
 
 
 
4b95828
 
 
65cf050
47688e3
23ece77
 
 
 
65cf050
23ece77
47688e3
 
23ece77
 
 
 
4b95828
23ece77
 
47688e3
 
23ece77
 
47688e3
23ece77
 
 
 
 
 
47688e3
 
 
 
 
 
 
 
 
 
 
 
 
23ece77
4b95828
 
65cf050
4b95828
23ece77
 
65cf050
 
 
23ece77
4b95828
23ece77
 
 
 
 
 
65cf050
23ece77
 
 
 
65cf050
23ece77
 
4b95828
23ece77
 
 
 
4b95828
23ece77
854197f
 
 
4b95828
7bcf996
4b95828
 
7bcf996
 
 
 
 
 
 
854197f
7bcf996
4b95828
7bcf996
 
 
854197f
4b95828
854197f
7bcf996
854197f
 
7bcf996
854197f
 
 
23ece77
4b95828
7bcf996
 
 
854197f
 
71817ec
23ece77
4b95828
32ffd0d
4b95828
518472b
23ece77
 
 
 
519b16c
23ece77
 
 
65cf050
 
 
 
 
 
 
 
 
 
 
 
23ece77
 
7bcf996
23ece77
65cf050
 
 
 
 
 
f340ee7
65cf050
 
519b16c
65cf050
f340ee7
 
65cf050
7bcf996
65cf050
 
 
 
c799bb2
65cf050
 
c799bb2
44eec3f
65cf050
c799bb2
65cf050
 
44eec3f
65cf050
44eec3f
 
 
 
65cf050
 
44eec3f
7bcf996
 
c799bb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44eec3f
c799bb2
65cf050
 
 
 
c799bb2
65cf050
c799bb2
65cf050
c799bb2
 
65cf050
44eec3f
 
 
 
65cf050
c799bb2
65cf050
44eec3f
65cf050
44eec3f
 
 
 
65cf050
 
c799bb2
 
 
 
 
44eec3f
c799bb2
 
 
 
 
 
 
44eec3f
c799bb2
 
 
 
 
 
 
 
 
 
 
 
65cf050
f340ee7
 
4b95828
 
 
f340ee7
23ece77
 
f340ee7
4b95828
 
f340ee7
7bcf996
f340ee7
23ece77
7bcf996
f340ee7
 
4b95828
23ece77
 
4b95828
23ece77
 
4b95828
65cf050
23ece77
4b95828
f340ee7
 
4b95828
f340ee7
 
 
4b95828
f340ee7
65cf050
 
 
 
 
 
f340ee7
4b95828
65cf050
 
f340ee7
4b95828
f340ee7
 
65cf050
 
f340ee7
7bcf996
 
 
 
65cf050
 
f340ee7
4b95828
f340ee7
23ece77
65cf050
23ece77
65cf050
7bcf996
 
f340ee7
23ece77
7bcf996
 
 
 
23ece77
7bcf996
 
 
23ece77
4b95828
7bcf996
 
 
 
 
 
 
 
23ece77
7bcf996
 
f340ee7
65cf050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3c2a8
 
 
 
 
 
 
65cf050
 
 
 
 
 
23ece77
dd3c2a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ffd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550ed22
 
4b95828
 
 
550ed22
4b95828
550ed22
 
 
 
4b95828
550ed22
 
 
4b95828
550ed22
4b95828
550ed22
 
 
4b95828
550ed22
 
 
65cf050
32ffd0d
550ed22
47688e3
09fa6fe
 
341ebec
854197f
65cf050
550ed22
629ec27
 
65cf050
f340ee7
 
 
 
 
 
 
65cf050
 
 
 
4b95828
f340ee7
 
550ed22
dd3c2a8
 
 
 
 
 
1c36a23
65cf050
1c36a23
 
 
 
 
 
 
 
629ec27
 
1c36a23
519b16c
dd3c2a8
e0fbfa8
 
 
 
 
65cf050
341ebec
65cf050
 
 
e0fbfa8
 
 
65cf050
341ebec
65cf050
341ebec
4b95828
65cf050
e0fbfa8
 
341ebec
e0fbfa8
 
65cf050
 
 
 
 
 
dd3c2a8
65cf050
 
c1976c0
09fa6fe
 
 
 
 
 
dd3c2a8
65cf050
629ec27
65cf050
 
 
629ec27
dd3c2a8
 
629ec27
 
32ffd0d
 
629ec27
4b95828
65cf050
 
 
 
 
dd3c2a8
 
629ec27
 
32ffd0d
 
 
 
 
 
 
 
 
 
 
629ec27
71817ec
550ed22
 
32ffd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550ed22
 
 
 
 
 
 
 
 
 
 
 
 
 
32ffd0d
 
 
 
 
65cf050
32ffd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65cf050
32ffd0d
 
 
 
 
 
65cf050
32ffd0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bcf996
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
import numpy as np
import pandas as pd
import statsmodels.formula.api as smf
import statsmodels.api as sm
import plotly.graph_objects as go
from scipy.optimize import minimize
import plotly.express as px
from scipy.stats import t, f
import gradio as gr
import io
import zipfile
import tempfile
from datetime import datetime
import docx
from docx.shared import Inches, Pt
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
from matplotlib.colors import to_hex
import os

# --- Clase RSM_BoxBehnken ---
class RSM_BoxBehnken:
    def __init__(self, data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels):
        """
        Inicializa la clase con los datos del diseño Box-Behnken.
        """
        self.data = data.copy()
        self.model = None
        self.model_simplified = None
        self.optimized_results = None
        self.optimal_levels = None
        self.all_figures = []  # Lista para almacenar las figuras
        self.x1_name = x1_name
        self.x2_name = x2_name
        self.x3_name = x3_name
        self.y_name = y_name

        # Niveles originales de las variables
        self.x1_levels = x1_levels
        self.x2_levels = x2_levels
        self.x3_levels = x3_levels

    def get_levels(self, variable_name):
        """
        Obtiene los niveles para una variable específica.
        """
        if variable_name == self.x1_name:
            return self.x1_levels
        elif variable_name == self.x2_name:
            return self.x2_levels
        elif variable_name == self.x3_name:
            return self.x3_levels
        else:
            raise ValueError(f"Variable desconocida: {variable_name}")

    def fit_model(self):
        """
        Ajusta el modelo de segundo orden completo a los datos.
        """
        formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                  f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2) + ' \
                  f'{self.x1_name}:{self.x2_name} + {self.x1_name}:{self.x3_name} + {self.x2_name}:{self.x3_name}'
        self.model = smf.ols(formula, data=self.data).fit()
        print("Modelo Completo:")
        print(self.model.summary())
        return self.model, self.pareto_chart(self.model, "Pareto - Modelo Completo")

    def fit_simplified_model(self):
        """
        Ajusta el modelo de segundo orden a los datos, eliminando términos no significativos.
        """
        formula = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + ' \
                  f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
        self.model_simplified = smf.ols(formula, data=self.data).fit()
        print("\nModelo Simplificado:")
        print(self.model_simplified.summary())
        return self.model_simplified, self.pareto_chart(self.model_simplified, "Pareto - Modelo Simplificado")

    def optimize(self, method='Nelder-Mead'):
        """
        Encuentra los niveles óptimos de los factores para maximizar la respuesta usando el modelo simplificado.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return

        def objective_function(x):
            return -self.model_simplified.predict(pd.DataFrame({
                self.x1_name: [x[0]],
                self.x2_name: [x[1]],
                self.x3_name: [x[2]]
            })).values[0]

        bounds = [(-1, 1), (-1, 1), (-1, 1)]
        x0 = [0, 0, 0]

        self.optimized_results = minimize(objective_function, x0, method=method, bounds=bounds)
        self.optimal_levels = self.optimized_results.x

        # Convertir niveles óptimos de codificados a naturales
        optimal_levels_natural = [
            self.coded_to_natural(self.optimal_levels[0], self.x1_name),
            self.coded_to_natural(self.optimal_levels[1], self.x2_name),
            self.coded_to_natural(self.optimal_levels[2], self.x3_name)
        ]
        # Crear la tabla de optimización
        optimization_table = pd.DataFrame({
            'Variable': [self.x1_name, self.x2_name, self.x3_name],
            'Nivel Óptimo (Natural)': optimal_levels_natural,
            'Nivel Óptimo (Codificado)': self.optimal_levels
        })

        return optimization_table.round(3)  # Redondear a 3 decimales

    def plot_rsm_individual(self, fixed_variable, fixed_level):
        """
        Genera un gráfico de superficie de respuesta (RSM) individual para una configuración específica.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        # Determinar las variables que varían y sus niveles naturales
        varying_variables = [var for var in [self.x1_name, self.x2_name, self.x3_name] if var != fixed_variable]
        
        # Establecer los niveles naturales para las variables que varían
        x_natural_levels = self.get_levels(varying_variables[0])
        y_natural_levels = self.get_levels(varying_variables[1])

        # Crear una malla de puntos para las variables que varían (en unidades naturales)
        x_range_natural = np.linspace(x_natural_levels[0], x_natural_levels[-1], 100)
        y_range_natural = np.linspace(y_natural_levels[0], y_natural_levels[-1], 100)
        x_grid_natural, y_grid_natural = np.meshgrid(x_range_natural, y_range_natural)

        # Convertir la malla de variables naturales a codificadas
        x_grid_coded = self.natural_to_coded(x_grid_natural, varying_variables[0])
        y_grid_coded = self.natural_to_coded(y_grid_natural, varying_variables[1])

        # Crear un DataFrame para la predicción con variables codificadas
        prediction_data = pd.DataFrame({
            varying_variables[0]: x_grid_coded.flatten(),
            varying_variables[1]: y_grid_coded.flatten(),
        })
        prediction_data[fixed_variable] = self.natural_to_coded(fixed_level, fixed_variable)

        # Calcular los valores predichos
        z_pred = self.model_simplified.predict(prediction_data).values.reshape(x_grid_coded.shape)

        # Filtrar por el nivel de la variable fija (en codificado)
        fixed_level_coded = self.natural_to_coded(fixed_level, fixed_variable)
        subset_data = self.data[np.isclose(self.data[fixed_variable], fixed_level_coded)]

        # Filtrar por niveles válidos en las variables que varían
        valid_levels = [-1, 0, 1]
        experiments_data = subset_data[
            subset_data[varying_variables[0]].isin(valid_levels) &
            subset_data[varying_variables[1]].isin(valid_levels)
        ]

        # Convertir coordenadas de experimentos a naturales
        experiments_x_natural = experiments_data[varying_variables[0]].apply(lambda x: self.coded_to_natural(x, varying_variables[0]))
        experiments_y_natural = experiments_data[varying_variables[1]].apply(lambda x: self.coded_to_natural(x, varying_variables[1]))

        # Crear el gráfico de superficie con variables naturales en los ejes y transparencia
        fig = go.Figure(data=[go.Surface(z=z_pred, x=x_grid_natural, y=y_grid_natural, colorscale='Viridis', opacity=0.7, showscale=True)])

        # --- Añadir cuadrícula a la superficie ---
        # Líneas en la dirección x
        for i in range(x_grid_natural.shape[0]):
            fig.add_trace(go.Scatter3d(
                x=x_grid_natural[i, :],
                y=y_grid_natural[i, :],
                z=z_pred[i, :],
                mode='lines',
                line=dict(color='gray', width=2),
                showlegend=False,
                hoverinfo='skip'
            ))
        # Líneas en la dirección y
        for j in range(x_grid_natural.shape[1]):
            fig.add_trace(go.Scatter3d(
                x=x_grid_natural[:, j],
                y=y_grid_natural[:, j],
                z=z_pred[:, j],
                mode='lines',
                line=dict(color='gray', width=2),
                showlegend=False,
                hoverinfo='skip'
            ))

        # --- Fin de la adición de la cuadrícula ---

        # Añadir los puntos de los experimentos en la superficie de respuesta con diferentes colores y etiquetas
        colors = px.colors.qualitative.Safe
        point_labels = [f"{row[self.y_name]:.3f}" for _, row in experiments_data.iterrows()]

        fig.add_trace(go.Scatter3d(
            x=experiments_x_natural,
            y=experiments_y_natural,
            z=experiments_data[self.y_name].round(3),
            mode='markers+text',
            marker=dict(size=4, color=colors[:len(experiments_x_natural)]),
            text=point_labels,
            textposition='top center',
            name='Experimentos'
        ))

        # Añadir etiquetas y título con variables naturales
        fig.update_layout(
            scene=dict(
                xaxis_title=f"{varying_variables[0]} ({self.get_units(varying_variables[0])})",
                yaxis_title=f"{varying_variables[1]} ({self.get_units(varying_variables[1])})",
                zaxis_title=self.y_name,
            ),
            title=f"{self.y_name} vs {varying_variables[0]} y {varying_variables[1]}<br><sup>{fixed_variable} fijo en {fixed_level:.3f} ({self.get_units(fixed_variable)}) (Modelo Simplificado)</sup>",
            height=800,
            width=1000,
            showlegend=True
        )
        return fig

    def get_units(self, variable_name):
        """
        Define las unidades de las variables para etiquetas.
        Puedes personalizar este método según tus necesidades.
        """
        units = {
            'Glucosa': 'g/L',
            'Extracto_de_Levadura': 'g/L',
            'Triptofano': 'g/L',
            'AIA_ppm': 'ppm'
        }
        return units.get(variable_name, '')

    def generate_all_plots(self):
        """
        Genera todas las gráficas de RSM, variando la variable fija y sus niveles usando el modelo simplificado.
        Almacena las figuras en self.all_figures.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return

        self.all_figures = []  # Resetear la lista de figuras

        # Niveles naturales para graficar
        levels_to_plot_natural = {
            self.x1_name: self.x1_levels,
            self.x2_name: self.x2_levels,
            self.x3_name: self.x3_levels
        }

        # Generar y almacenar gráficos individuales
        for fixed_variable in [self.x1_name, self.x2_name, self.x3_name]:
            for level in levels_to_plot_natural[fixed_variable]:
                fig = self.plot_rsm_individual(fixed_variable, level)
                if fig is not None:
                    self.all_figures.append(fig)

    def coded_to_natural(self, coded_value, variable_name):
        """Convierte un valor codificado a su valor natural."""
        levels = self.get_levels(variable_name)
        return levels[0] + (coded_value + 1) * (levels[-1] - levels[0]) / 2

    def natural_to_coded(self, natural_value, variable_name):
        """Convierte un valor natural a su valor codificado."""
        levels = self.get_levels(variable_name)
        return -1 + 2 * (natural_value - levels[0]) / (levels[-1] - levels[0])

    def pareto_chart(self, model, title):
        """
        Genera un diagrama de Pareto para los efectos usando estadísticos F,
        incluyendo la línea de significancia.
        """
        # Calcular los estadísticos F para cada término
        # F = (coef/std_err)^2 = t^2
        fvalues = model.tvalues[1:]**2  # Excluir la Intercept y convertir t a F
        abs_fvalues = np.abs(fvalues)
        sorted_idx = np.argsort(abs_fvalues)[::-1]
        sorted_fvalues = abs_fvalues[sorted_idx]
        sorted_names = fvalues.index[sorted_idx]

        # Calcular el valor crítico de F para la línea de significancia
        alpha = 0.05  # Nivel de significancia
        dof_num = 1  # Grados de libertad del numerador (cada término)
        dof_den = model.df_resid  # Grados de libertad residuales
        f_critical = f.ppf(1 - alpha, dof_num, dof_den)

        # Crear el diagrama de Pareto
        fig = px.bar(
            x=sorted_fvalues.round(3),
            y=sorted_names,
            orientation='h',
            labels={'x': 'Estadístico F', 'y': 'Término'},
            title=title
        )
        fig.update_yaxes(autorange="reversed")

        # Agregar la línea de significancia
        fig.add_vline(x=f_critical, line_dash="dot",
                     annotation_text=f"F crítico = {f_critical:.3f}",
                     annotation_position="bottom right")

        return fig

    def get_simplified_equation(self):
        """
        Retorna la ecuación del modelo simplificado como una cadena de texto.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        coefficients = self.model_simplified.params
        equation = f"{self.y_name} = {coefficients['Intercept']:.3f}"

        for term, coef in coefficients.items():
            if term != 'Intercept':
                if term == f'{self.x1_name}':
                    equation += f" + {coef:.3f}*{self.x1_name}"
                elif term == f'{self.x2_name}':
                    equation += f" + {coef:.3f}*{self.x2_name}"
                elif term == f'{self.x3_name}':
                    equation += f" + {coef:.3f}*{self.x3_name}"
                elif term == f'I({self.x1_name} ** 2)':
                    equation += f" + {coef:.3f}*{self.x1_name}^2"
                elif term == f'I({self.x2_name} ** 2)':
                    equation += f" + {coef:.3f}*{self.x2_name}^2"
                elif term == f'I({self.x3_name} ** 2)':
                    equation += f" + {coef:.3f}*{self.x3_name}^2"

        return equation
    
    def generate_prediction_table(self):
        """
        Genera una tabla con los valores actuales, predichos y residuales.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        self.data['Predicho'] = self.model_simplified.predict(self.data)
        self.data['Residual'] = self.data[self.y_name] - self.data['Predicho']

        return self.data[[self.y_name, 'Predicho', 'Residual']].round(3)

    def calculate_contribution_percentage(self):
        """
        Calcula el porcentaje de contribución de cada factor usando estadísticos F.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None
    
        # ANOVA del modelo simplificado
        anova_table = sm.stats.anova_lm(self.model_simplified, typ=2)
    
        # Suma de cuadrados total
        ss_total = anova_table['sum_sq'].sum()
    
        # Crear tabla de contribución
        contribution_table = pd.DataFrame({
            'Fuente de Variación': [],
            'Suma de Cuadrados': [],
            'Grados de Libertad': [],
            'Cuadrado Medio': [],
            'F': [],
            'Valor p': [],
            '% Contribución': []
        })

        # Calcular estadísticos F y porcentaje de contribución para cada factor
        ms_error = anova_table.loc['Residual', 'sum_sq'] / anova_table.loc['Residual', 'df']
        
        # Agregar Block (si está disponible en los datos)
        block_ss = self.data.groupby('Block')['AIA_ppm'].sum().var() if 'Block' in self.data.columns else 0
        if block_ss > 0:
            block_df = len(self.data['Block'].unique()) - 1 if 'Block' in self.data.columns else 1
            block_ms = block_ss / block_df
            block_f = block_ms / ms_error
            block_p = f.sf(block_f, block_df, anova_table.loc['Residual', 'df'])
            contribution_table = pd.concat([contribution_table, pd.DataFrame({
                'Fuente de Variación': ['Block'],
                'Suma de Cuadrados': [block_ss],
                'Grados de Libertad': [block_df],
                'Cuadrado Medio': [block_ms],
                'F': [block_f],
                'Valor p': [block_p],
                '% Contribución': [(block_ss / ss_total) * 100]
            })], ignore_index=True)
        
        # Agregar Model (suma de todos los términos del modelo excepto el residual)
        model_ss = anova_table['sum_sq'][:-1].sum()  # Excluir residual
        model_df = anova_table['df'][:-1].sum()
        model_ms = model_ss / model_df
        model_f = model_ms / ms_error
        model_p = f.sf(model_f, model_df, anova_table.loc['Residual', 'df'])
        contribution_table = pd.concat([contribution_table, pd.DataFrame({
            'Fuente de Variación': ['Model'],
            'Suma de Cuadrados': [model_ss],
            'Grados de Libertad': [model_df],
            'Cuadrado Medio': [model_ms],
            'F': [model_f],
            'Valor p': [model_p],
            '% Contribución': [(model_ss / ss_total) * 100]
        })], ignore_index=True)

        # Agregar factores individuales y sus interacciones
        for index, row in anova_table.iterrows():
            if index != 'Residual':
                factor_name = index
                if factor_name == f'I({self.x1_name} ** 2)':
                    factor_name = f'{self.x1_name}²'
                elif factor_name == f'I({self.x2_name} ** 2)':
                    factor_name = f'{self.x2_name}²'
                elif factor_name == f'I({self.x3_name} ** 2)':
                    factor_name = f'{self.x3_name}²'
    
                ss_factor = row['sum_sq']
                df_factor = row['df']
                ms_factor = ss_factor / df_factor
                f_stat = ms_factor / ms_error
                p_value = f.sf(f_stat, df_factor, anova_table.loc['Residual', 'df'])
                contribution_percentage = (ss_factor / ss_total) * 100
    
                contribution_table = pd.concat([contribution_table, pd.DataFrame({
                    'Fuente de Variación': [factor_name],
                    'Suma de Cuadrados': [ss_factor],
                    'Grados de Libertad': [df_factor],
                    'Cuadrado Medio': [ms_factor],
                    'F': [f_stat],
                    'Valor p': [p_value],
                    '% Contribución': [contribution_percentage]
                })], ignore_index=True)
    
        # Agregar Residual
        residual_ss = anova_table.loc['Residual', 'sum_sq']
        residual_df = anova_table.loc['Residual', 'df']
        residual_ms = residual_ss / residual_df
        contribution_table = pd.concat([contribution_table, pd.DataFrame({
            'Fuente de Variación': ['Residual'],
            'Suma de Cuadrados': [residual_ss],
            'Grados de Libertad': [residual_df],
            'Cuadrado Medio': [residual_ms],
            'F': [None],
            'Valor p': [None],
            '% Contribución': [(residual_ss / ss_total) * 100]
        })], ignore_index=True)
    
        # Agregar Correlation Total
        contribution_table = pd.concat([contribution_table, pd.DataFrame({
            'Fuente de Variación': ['Cor Total'],
            'Suma de Cuadrados': [ss_total],
            'Grados de Libertad': [len(self.data) - 1],
            'Cuadrado Medio': [None],
            'F': [None],
            'Valor p': [None],
            '% Contribución': [100]
        })], ignore_index=True)
    
        return contribution_table.round(3)

    def calculate_detailed_anova(self):
        """
        Calcula la tabla ANOVA detallada con la descomposición del error residual.
        """
        if self.model_simplified is None:
            print("Error: Ajusta el modelo simplificado primero.")
            return None

        # --- ANOVA detallada ---
        # 1. Ajustar un modelo solo con los términos de primer orden y cuadráticos
        formula_reduced = f'{self.y_name} ~ {self.x1_name} + {self.x2_name} + {self.x3_name} + ' \
                         f'I({self.x1_name}**2) + I({self.x2_name}**2) + I({self.x3_name}**2)'
        model_reduced = smf.ols(formula_reduced, data=self.data).fit()

        # 2. ANOVA del modelo reducido
        anova_reduced = sm.stats.anova_lm(model_reduced, typ=2)

        # 3. Suma de cuadrados total
        ss_total = np.sum((self.data[self.y_name] - self.data[self.y_name].mean())**2)

        # 4. Grados de libertad totales
        df_total = len(self.data) - 1

        # 5. Suma de cuadrados de la regresión
        ss_regression = anova_reduced['sum_sq'][:-1].sum()  # Sumar todo excepto 'Residual'

        # 6. Grados de libertad de la regresión
        df_regression = len(anova_reduced) - 1

        # 7. Suma de cuadrados del error residual
        ss_residual = self.model_simplified.ssr
        df_residual = self.model_simplified.df_resid

        # 8. Suma de cuadrados del error puro (se calcula a partir de las réplicas)
        replicas = self.data[self.data.duplicated(subset=[self.x1_name, self.x2_name, self.x3_name], keep=False)]
        if not replicas.empty:
            ss_pure_error = replicas.groupby([self.x1_name, self.x2_name, self.x3_name])[self.y_name].var().sum() * replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
            df_pure_error = len(replicas) - replicas.groupby([self.x1_name, self.x2_name, self.x3_name]).ngroups
        else:
            ss_pure_error = np.nan
            df_pure_error = np.nan

        # 9. Suma de cuadrados de la falta de ajuste
        ss_lack_of_fit = ss_residual - ss_pure_error if not np.isnan(ss_pure_error) else np.nan
        df_lack_of_fit = df_residual - df_pure_error if not np.isnan(df_pure_error) else np.nan

        # 10. Cuadrados medios
        ms_regression = ss_regression / df_regression
        ms_residual = ss_residual / df_residual
        ms_lack_of_fit = ss_lack_of_fit / df_lack_of_fit if not np.isnan(ss_lack_of_fit) else np.nan
        ms_pure_error = ss_pure_error / df_pure_error if not np.isnan(ss_pure_error) else np.nan

        # 11. Estadísticos F y valores p
        f_regression = ms_regression / ms_residual
        p_regression = 1 - f.cdf(f_regression, df_regression, df_residual)
        
        f_lack_of_fit = ms_lack_of_fit / ms_pure_error if not np.isnan(ms_lack_of_fit) else np.nan
        p_lack_of_fit = 1 - f.cdf(f_lack_of_fit, df_lack_of_fit, df_pure_error) if not np.isnan(f_lack_of_fit) else np.nan

        # 12. Crear la tabla ANOVA detallada
        detailed_anova_table = pd.DataFrame({
            'Fuente de Variación': ['Regresión', 'Residual', 'Falta de Ajuste', 'Error Puro', 'Total'],
            'Suma de Cuadrados': [ss_regression, ss_residual, ss_lack_of_fit, ss_pure_error, ss_total],
            'Grados de Libertad': [df_regression, df_residual, df_lack_of_fit, df_pure_error, df_total],
            'Cuadrado Medio': [ms_regression, ms_residual, ms_lack_of_fit, ms_pure_error, np.nan],
            'F': [f_regression, np.nan, f_lack_of_fit, np.nan, np.nan],
            'Valor p': [p_regression, np.nan, p_lack_of_fit, np.nan, np.nan]
        })
        
        # Calcular la suma de cuadrados y estadísticos F para la curvatura
        ss_curvature = anova_reduced['sum_sq'][f'I({self.x1_name} ** 2)'] + \
                      anova_reduced['sum_sq'][f'I({self.x2_name} ** 2)'] + \
                      anova_reduced['sum_sq'][f'I({self.x3_name} ** 2)']
        df_curvature = 3
        ms_curvature = ss_curvature / df_curvature
        f_curvature = ms_curvature / ms_residual
        p_curvature = 1 - f.cdf(f_curvature, df_curvature, df_residual)

        # Añadir la fila de curvatura a la tabla ANOVA
        detailed_anova_table.loc[len(detailed_anova_table)] = [
            'Curvatura', 
            ss_curvature, 
            df_curvature, 
            ms_curvature,
            f_curvature,
            p_curvature
        ]

        # Reorganizar las filas y resetear el índice
        detailed_anova_table = detailed_anova_table.reindex([0, 5, 1, 2, 3, 4]).reset_index(drop=True)

        return detailed_anova_table.round(3)

    def get_all_tables(self):
        """
        Obtiene todas las tablas generadas para ser exportadas a Excel.
        """
        prediction_table = self.generate_prediction_table()
        contribution_table = self.calculate_contribution_percentage()
        detailed_anova_table = self.calculate_detailed_anova()

        return {
            'Predicciones': prediction_table,
            '% Contribución': contribution_table,
            'ANOVA Detallada': detailed_anova_table
        }

    def save_figures_to_zip(self):
        """
        Guarda todas las figuras almacenadas en self.all_figures a un archivo ZIP en memoria.
        """
        if not self.all_figures:
            return None

        zip_buffer = io.BytesIO()
        with zipfile.ZipFile(zip_buffer, 'w') as zip_file:
            for idx, fig in enumerate(self.all_figures, start=1):
                img_bytes = fig.to_image(format="png")
                zip_file.writestr(f'Grafico_{idx}.png', img_bytes)
        zip_buffer.seek(0)

        # Guardar en un archivo temporal
        with tempfile.NamedTemporaryFile(delete=False, suffix=".zip") as temp_file:
            temp_file.write(zip_buffer.read())
            temp_path = temp_file.name

        return temp_path

    def save_fig_to_bytes(self, fig):
        """
        Convierte una figura Plotly a bytes en formato PNG.
        """
        return fig.to_image(format="png")

    def save_all_figures_png(self):
        """
        Guarda todas las figuras en archivos PNG temporales y retorna las rutas.
        """
        png_paths = []
        for idx, fig in enumerate(self.all_figures, start=1):
            img_bytes = fig.to_image(format="png")
            with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
                temp_file.write(img_bytes)
                temp_path = temp_file.name
                png_paths.append(temp_path)
        return png_paths

    def save_tables_to_excel(self):
        """
        Guarda todas las tablas en un archivo Excel con múltiples hojas y retorna la ruta del archivo.
        """
        tables = self.get_all_tables()
        excel_buffer = io.BytesIO()
        with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
            for sheet_name, table in tables.items():
                table.to_excel(writer, sheet_name=sheet_name, index=False)
        excel_buffer.seek(0)
        excel_bytes = excel_buffer.read()

        # Guardar en un archivo temporal
        with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx") as temp_file:
            temp_file.write(excel_bytes)
            temp_path = temp_file.name

        return temp_path

    def export_tables_to_word(self, tables_dict):
        """
        Exporta las tablas proporcionadas a un documento de Word.
        """
        if not tables_dict:
            return None

        doc = docx.Document()

        # Configurar estilo de fuente
        style = doc.styles['Normal']
        font = style.font
        font.name = 'Times New Roman'
        font.size = Pt(12)

        # Título del informe
        titulo = doc.add_heading('Informe de Optimización de Producción de AIA', 0)
        titulo.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER

        doc.add_paragraph(f"Fecha: {datetime.now().strftime('%d/%m/%Y %H:%M')}").alignment = WD_PARAGRAPH_ALIGNMENT.CENTER

        doc.add_paragraph('\n')  # Espacio

        for sheet_name, table in tables_dict.items():
            # Añadir título de la tabla
            doc.add_heading(sheet_name, level=1)

            if table.empty:
                doc.add_paragraph("No hay datos disponibles para esta tabla.")
                continue

            # Añadir tabla al documento
            table_doc = doc.add_table(rows=1, cols=len(table.columns))
            table_doc.style = 'Light List Accent 1'

            # Añadir encabezados
            hdr_cells = table_doc.rows[0].cells
            for idx, col_name in enumerate(table.columns):
                hdr_cells[idx].text = col_name

            # Añadir filas de datos
            for _, row in table.iterrows():
                row_cells = table_doc.add_row().cells
                for idx, item in enumerate(row):
                    row_cells[idx].text = str(item)

            doc.add_paragraph('\n')  # Espacio entre tablas

        # Guardar el documento en un archivo temporal
        with tempfile.NamedTemporaryFile(delete=False, suffix=".docx") as tmp:
            doc.save(tmp.name)
            tmp_path = tmp.name

        return tmp_path

# --- Funciones para la Interfaz de Gradio ---

def load_data(x1_name, x2_name, x3_name, y_name, x1_levels_str, x2_levels_str, x3_levels_str, data_str):
    """
    Carga los datos del diseño Box-Behnken desde cajas de texto y crea la instancia de RSM_BoxBehnken.
    """
    try:
        # Convertir los niveles a listas de números
        x1_levels = [float(x.strip()) for x in x1_levels_str.split(',')]
        x2_levels = [float(x.strip()) for x in x2_levels_str.split(',')]
        x3_levels = [float(x.strip()) for x in x3_levels_str.split(',')]

        # Crear DataFrame a partir de la cadena de datos
        data_list = [row.split(',') for row in data_str.strip().split('\n')]
        column_names = ['Exp.', x1_name, x2_name, x3_name, y_name]
        data = pd.DataFrame(data_list, columns=column_names)
        data = data.apply(pd.to_numeric, errors='coerce')  # Convertir a numérico

        # Validar que el DataFrame tenga las columnas correctas
        if not all(col in data.columns for col in column_names):
            raise ValueError("El formato de los datos no es correcto.")

        # Crear la instancia de RSM_BoxBehnken
        global rsm
        rsm = RSM_BoxBehnken(data, x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels)

        return data.round(3), x1_name, x2_name, x3_name, y_name, x1_levels, x2_levels, x3_levels, gr.update(visible=True)
    
    except Exception as e:
        # Mostrar mensaje de error
        error_message = f"Error al cargar los datos: {str(e)}"
        print(error_message)
        return None, "", "", "", "", [], [], [], gr.update(visible=False)

def fit_and_optimize_model():
    if 'rsm' not in globals():
        return [None]*11  # Ajustar el número de outputs

    # Ajustar modelos y optimizar
    model_completo, pareto_completo = rsm.fit_model()
    model_simplificado, pareto_simplificado = rsm.fit_simplified_model()
    optimization_table = rsm.optimize()
    equation = rsm.get_simplified_equation()
    prediction_table = rsm.generate_prediction_table()
    contribution_table = rsm.calculate_contribution_percentage()
    anova_table = rsm.calculate_detailed_anova()
    
    # Generar todas las figuras y almacenarlas
    rsm.generate_all_plots()
    
    # Formatear la ecuación para que se vea mejor en Markdown
    equation_formatted = equation.replace(" + ", "<br>+ ").replace(" ** ", "^").replace("*", " × ")
    equation_formatted = f"### Ecuación del Modelo Simplificado:<br>{equation_formatted}"
    
    # Guardar las tablas en Excel temporal
    excel_path = rsm.save_tables_to_excel()

    # Guardar todas las figuras en un ZIP temporal
    zip_path = rsm.save_figures_to_zip()

    return (
        model_completo.summary().as_html(),
        pareto_completo,
        model_simplificado.summary().as_html(),
        pareto_simplificado,
        equation_formatted,
        optimization_table,
        prediction_table,
        contribution_table,
        anova_table,
        zip_path,    # Ruta del ZIP de gráficos
        excel_path   # Ruta del Excel de tablas
    )

def show_plot(current_index, all_figures):
    if not all_figures:
        return None, "No hay gráficos disponibles.", current_index
    selected_fig = all_figures[current_index]
    plot_info_text = f"Gráfico {current_index + 1} de {len(all_figures)}"
    return selected_fig, plot_info_text, current_index

def navigate_plot(direction, current_index, all_figures):
    """
    Navega entre los gráficos.
    """
    if not all_figures:
        return None, "No hay gráficos disponibles.", current_index
    
    if direction == 'left':
        new_index = (current_index - 1) % len(all_figures)
    elif direction == 'right':
        new_index = (current_index + 1) % len(all_figures)
    else:
        new_index = current_index
    
    selected_fig = all_figures[new_index]
    plot_info_text = f"Gráfico {new_index + 1} de {len(all_figures)}"
    
    return selected_fig, plot_info_text, new_index

def download_current_plot(all_figures, current_index):
    """
    Descarga la figura actual como PNG.
    """
    if not all_figures:
        return None
    fig = all_figures[current_index]
    img_bytes = rsm.save_fig_to_bytes(fig)
    filename = f"Grafico_RSM_{current_index + 1}.png"
    
    # Crear un archivo temporal
    with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
        temp_file.write(img_bytes)
        temp_path = temp_file.name
    
    return temp_path  # Retornar solo la ruta

def download_all_plots_zip():
    """
    Descarga todas las figuras en un archivo ZIP.
    """
    if 'rsm' not in globals():
        return None
    zip_path = rsm.save_figures_to_zip()
    if zip_path:
        filename = f"Graficos_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
        # Gradio no permite renombrar directamente, por lo que retornamos la ruta del archivo
        return zip_path
    return None

def download_all_tables_excel():
    """
    Descarga todas las tablas en un archivo Excel con múltiples hojas.
    """
    if 'rsm' not in globals():
        return None
    excel_path = rsm.save_tables_to_excel()
    if excel_path:
        filename = f"Tablas_RSM_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
        # Gradio no permite renombrar directamente, por lo que retornamos la ruta del archivo
        return excel_path
    return None

def exportar_word(rsm_instance, tables_dict):
    """
    Función para exportar las tablas a un documento de Word.
    """
    word_path = rsm_instance.export_tables_to_word(tables_dict)
    if word_path and os.path.exists(word_path):
        return word_path
    return None

# --- Crear la interfaz de Gradio ---

def create_gradio_interface():
    with gr.Blocks() as demo:
        gr.Markdown("# Optimización de la producción de AIA usando RSM Box-Behnken")
        
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Configuración del Diseño")
                x1_name_input = gr.Textbox(label="Nombre de la Variable X1 (ej. Glucosa)", value="Glucosa")
                x2_name_input = gr.Textbox(label="Nombre de la Variable X2 (ej. Extracto de Levadura)", value="Extracto_de_Levadura")
                x3_name_input = gr.Textbox(label="Nombre de la Variable X3 (ej. Triptófano)", value="Triptofano")
                y_name_input = gr.Textbox(label="Nombre de la Variable Dependiente (ej. AIA (ppm))", value="AIA_ppm")
                x1_levels_input = gr.Textbox(label="Niveles de X1 (separados por comas)", value="1, 3.5, 5.5")
                x2_levels_input = gr.Textbox(label="Niveles de X2 (separados por comas)", value="0.03, 0.2, 0.3")
                x3_levels_input = gr.Textbox(label="Niveles de X3 (separados por comas)", value="0.4, 0.65, 0.9")
                data_input = gr.Textbox(label="Datos del Experimento (formato CSV)", lines=10, value="""1,-1,-1,0,166.594
2,1,-1,0,177.557
3,-1,1,0,127.261
4,1,1,0,147.573
5,-1,0,-1,188.883
6,1,0,-1,224.527
7,-1,0,1,190.238
8,1,0,1,226.483
9,0,-1,-1,195.550
10,0,1,-1,149.493
11,0,-1,1,187.683
12,0,1,1,148.621
13,0,0,0,278.951
14,0,0,0,297.238
15,0,0,0,280.896""")
                load_button = gr.Button("Cargar Datos")
            
            with gr.Column():
                gr.Markdown("## Datos Cargados")
                data_output = gr.Dataframe(label="Tabla de Datos", interactive=False)
        
        # Sección de análisis visible solo después de cargar los datos
        with gr.Row(visible=False) as analysis_row:
            with gr.Column():
                fit_button = gr.Button("Ajustar Modelo y Optimizar")
                gr.Markdown("**Modelo Completo**")
                model_completo_output = gr.HTML()
                pareto_completo_output = gr.Plot()
                gr.Markdown("**Modelo Simplificado**")
                model_simplificado_output = gr.HTML()
                pareto_simplificado_output = gr.Plot()
                gr.Markdown("**Ecuación del Modelo Simplificado**")
                equation_output = gr.HTML()
                optimization_table_output = gr.Dataframe(label="Tabla de Optimización", interactive=False)
                prediction_table_output = gr.Dataframe(label="Tabla de Predicciones", interactive=False)
                contribution_table_output = gr.Dataframe(label="Tabla de % de Contribución", interactive=False)
                anova_table_output = gr.Dataframe(label="Tabla ANOVA Detallada", interactive=False)
                gr.Markdown("## Descargar Todas las Tablas")
                download_excel_button = gr.DownloadButton("Descargar Tablas en Excel")
                download_word_button = gr.DownloadButton("Descargar Tablas en Word")
            
            with gr.Column():
                gr.Markdown("## Generar Gráficos de Superficie de Respuesta")
                fixed_variable_input = gr.Dropdown(label="Variable Fija", choices=["Glucosa", "Extracto_de_Levadura", "Triptofano"], value="Glucosa")
                fixed_level_input = gr.Slider(label="Nivel de Variable Fija", minimum=-1, maximum=1, step=0.01, value=0.0)
                plot_button = gr.Button("Generar Gráficos")
                with gr.Row():
                    left_button = gr.Button("<")
                    right_button = gr.Button(">")
                rsm_plot_output = gr.Plot()
                plot_info = gr.Textbox(label="Información del Gráfico", value="Gráfico 1 de 9", interactive=False)
                with gr.Row():
                    download_plot_button = gr.DownloadButton("Descargar Gráfico Actual (PNG)")
                    download_all_plots_button = gr.DownloadButton("Descargar Todos los Gráficos (ZIP)")
                current_index_state = gr.State(0)  # Estado para el índice actual
                all_figures_state = gr.State([])  # Estado para todas las figuras
    
        # Cargar datos
        load_button.click(
            load_data,
            inputs=[x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, data_input],
            outputs=[data_output, x1_name_input, x2_name_input, x3_name_input, y_name_input, x1_levels_input, x2_levels_input, x3_levels_input, analysis_row]
        )
        
        # Ajustar modelo y optimizar
        fit_button.click(
            fit_and_optimize_model,
            inputs=[],
            outputs=[
                model_completo_output,
                pareto_completo_output,
                model_simplificado_output,
                pareto_simplificado_output,
                equation_output,
                optimization_table_output,
                prediction_table_output,
                contribution_table_output,
                anova_table_output,
                download_all_plots_button,  # Ruta del ZIP de gráficos
                download_excel_button      # Ruta del Excel de tablas
            ]
        )
        
        # Generar y mostrar los gráficos
        plot_button.click(
            lambda fixed_var, fixed_lvl: (
                rsm.plot_rsm_individual(fixed_var, fixed_lvl),
                f"Gráfico 1 de {len(rsm.all_figures)}" if rsm.all_figures else "No hay gráficos disponibles.",
                0,
                rsm.all_figures  # Actualizar el estado de todas las figuras
            ),
            inputs=[fixed_variable_input, fixed_level_input],
            outputs=[rsm_plot_output, plot_info, current_index_state, all_figures_state]
        )
        
        # Navegación de gráficos
        left_button.click(
            lambda current_index, all_figures: navigate_plot('left', current_index, all_figures),
            inputs=[current_index_state, all_figures_state],
            outputs=[rsm_plot_output, plot_info, current_index_state]
        )
        right_button.click(
            lambda current_index, all_figures: navigate_plot('right', current_index, all_figures),
            inputs=[current_index_state, all_figures_state],
            outputs=[rsm_plot_output, plot_info, current_index_state]
        )
        
        # Descargar gráfico actual
        download_plot_button.click(
            download_current_plot,
            inputs=[all_figures_state, current_index_state],
            outputs=download_plot_button
        )
        
        # Descargar todos los gráficos en ZIP
        download_all_plots_button.click(
            download_all_plots_zip,
            inputs=[],
            outputs=download_all_plots_button
        )
        
        # Descargar todas las tablas en Excel y Word
        download_excel_button.click(
            fn=lambda: download_all_tables_excel(),
            inputs=[],
            outputs=download_excel_button
        )
        
        download_word_button.click(
            fn=lambda: exportar_word(rsm, rsm.get_all_tables()),
            inputs=[],
            outputs=download_word_button
        )
        
        # Ejemplo de uso
        gr.Markdown("## Ejemplo de uso")
        gr.Markdown("""
        1. Introduce los nombres de las variables y sus niveles en las cajas de texto correspondientes.
        2. Copia y pega los datos del experimento en la caja de texto 'Datos del Experimento'.
        3. Haz clic en 'Cargar Datos' para cargar los datos en la tabla.
        4. Haz clic en 'Ajustar Modelo y Optimizar' para ajustar el modelo y encontrar los niveles óptimos de los factores.
        5. Selecciona una variable fija y su nivel en los controles deslizantes.
        6. Haz clic en 'Generar Gráficos' para generar los gráficos de superficie de respuesta.
        7. Navega entre los gráficos usando los botones '<' y '>'.
        8. Descarga el gráfico actual en PNG o descarga todos los gráficos en un ZIP.
        9. Descarga todas las tablas en un archivo Excel o Word con los botones correspondientes.
        """)

    return demo

# --- Función Principal ---

def main():
    interface = create_gradio_interface()
    interface.launch(share=True)

if __name__ == "__main__":
    main()